Metabolic Engineering X- Poster Presentation Schedule

Poster Group 1 (Sunday, June 15 and Monday, June 16)

Poster Abstract Title	Last Name	First Name
Number		
The Genetic and Metabolic Regulation of Rhamnolipids	Abdel-	
Biosynthesis in Pseudomonas Aeruginosa Reveals New		Abmad M
1 Engineering Strategies for Heterologous Expression	Mawgoud	Ahmad M.
Isotopically Nonstationary 13C Flux Analysis of		
2 Isobutyraldehyde Production in Synechococcus Elongatus	Adebiyi	Adeola
Characterization of LDH Genes for L-Lactic Acid Production in	Auchiyi	Aucolu
3 Pichia Pastoris	Almeida	Pollyne B. A.
3 116/11/4 1 43/6/13	7.1111.01.00	r onyme bry w
Identification of Key Metabolite Concentrations and Enzyme		
Saturations Determining the Physiological States of Glucose-Fed	d	
4 E. coli for the Production of 1,4-Butanediol	Andreozzi	Stefano
New Advances in 13C Metabolic Flux Analysis: Complete-MFA,		
5 Co-Culture MFA and Dynamic MFA	Antoniewicz	Maciek R.
Parallel Labeling Experiments: A Novel Approach for Validating		
6 Metabolic Network Models	Au	Jennifer
Synthetic Microbial Metabolism Refactoring for the Production		
7 of a Chemical Synthon, 2,4-Dihydroxybutyric Acid	Auriol	Clément
Implementation of a Disassociated Fatty Acid Synthase System		
(FAS type II) in Saccharomyces Cerevisiae for Fatty Acid and		
8 Wax Ester Production	Azevedo	Flávio
Production of 4-Hydroxybutyric Acid By Metabolically		
Engineered Mannheimia Succiniciproducens and Its Conversion		
9 to Gamma-Butyrolactone By Acid Treatment	Bang	Junho
Challenges in Reverse Engineering of Industrial Fermentation		
10 Strains	Benjamin	Kirsten R.
Metabolic Engineering for Ricinoleic Acid Production in Y.		
11 Lipolytica	Beopoulos	Athanasios
Fatty Acid Overproduction in a Genetically Engineered Puryvate		
12 Decarboxylase-Negative Strain of Saccharomyces Cerevisiae	Bergman	Alexandra
Isolation, Characterization and Metabolic Engineering of a		
13 Thermophilic Bacillus for Green Chemical Production	Bosma	Elleke F.
Controlled Protein Degradation for Development of Metabolite		
14 Valves	Brockman	Irene
Flexible and User Friendly Tools for the Incorporation of		
15 Fluxomics Data into Metabolic Models	Carreira	Rafael
Unraveling the Inhibitory Effects of Acetate on Ethanol		
16 Production in Cen.PK	Chakrabarti	Anirikh
Understanding and Optimizing Free Fatty Acid Production in		
17 Synechocystis Sp. PCC 6803	Cheah	Yi Ern

18 Novel Acetyl-CoA Transfer Route in Saccharomyces Cerevisiae	Chen	Yun
19 Microbial Production of Short-Chain Alkanes	Choi	So Young
High-Throughput Screening System and Its Biotechnological		
20 Applications	Choi	Jong Hyun
Overcoming Inefficient Cellobiose Fermentation By Cellobiose	Cl	12 121 -
21 Phosphorylase in the Presence of Xylose	Chomvong	Kulika
Production of Phenol from Glucose in <i>Escherichia coli</i> through	Chuna	Hannah
22 Metabolic Engineering Approach Towards Synthetic Phototrophy Engineering Proton Pumping	Chung	Hannah
Towards Synthetic Phototrophy: Engineering Proton-Pumping	Claassens	Nico J.
23 Rhodopsins into E. coli Engineering Anaerobic Amino Acid Production in	Cidasseiis	INICO J.
24 Saccharomyces Cerevisiae: Alanine As Case of Study	Cueto-Rojas	Hugo Federic
Cytosolic Acetyl-CoA Platform in Yeast for Biochemicals	Cueto-Rojas	nugo redenc
25 Production	Dai	Zongjie
25 Floudction	Dai	Zorigjie
26 Toward a Biosynthetic Route to Sclareol and Amber Odorants	Daviet	Laurent
20 Toward a biosynthetic Route to Sciareor and Amber Odorants	Daviet	Laurent
27 Advanced Production of Faee in a S. Cerevisiae Cell-Factory	de Jong	Bouke Wim
Metabolic Engineering of Cyclic Triterpenoid Production in	ac Jong	Boake Willi
28 Saccharomyces Cerevisiae	Ebert	Birgitta E.
Development & Exploitation of Gene Tools for Metabolic	Locit	Dirgitta L.
29 Engineering in Saccharolytic Clostridia	Ehsaan	Muhammad
25 21.8		
30 Novel Methods to Investigate Solvent Toxicity in Bacteria	Fletcher	Eugene
Isobutanol Production By an Industrial Saccharomyces		
32 <i>Cerevisiae</i> Strain	Generoso	Wesley Cardo
Metabolic Engineering of Photorespiratory Bypass Pathways to		
33 Enhance Novel Biofuel Production in Transgenic Plants	Goklany	Sheba
Metabolic Activities and Their Control at the Mitochondria-		
34 Cytosol Interface in CHO Cells	Heinzle	Писси
34 Cytosol Interface in Crio Cens	пеши	Elmar
General and Specific Stress Responses Towards Short Even-	петиле	Eimar
•	пешие	Elmar
General and Specific Stress Responses Towards Short Even-	Hviid	Anne-Mette
General and Specific Stress Responses Towards Short Even- Chain Alcohols in Lactic Acid Bacteria Provide Clues for		
General and Specific Stress Responses Towards Short Even- Chain Alcohols in Lactic Acid Bacteria Provide Clues for 35 Improving Second Generation Biorefineries		
General and Specific Stress Responses Towards Short Even- Chain Alcohols in Lactic Acid Bacteria Provide Clues for 35 Improving Second Generation Biorefineries Isotopically Nonstationary 13C Metabolic Flux Analysis of	Hviid	Anne-Mette
General and Specific Stress Responses Towards Short Even- Chain Alcohols in Lactic Acid Bacteria Provide Clues for 35 Improving Second Generation Biorefineries Isotopically Nonstationary 13C Metabolic Flux Analysis of 36 Arabidopsis thaliana Rosettes at Altered Light Conditions	Hviid	Anne-Mette
General and Specific Stress Responses Towards Short Even- Chain Alcohols in Lactic Acid Bacteria Provide Clues for 35 Improving Second Generation Biorefineries Isotopically Nonstationary 13C Metabolic Flux Analysis of 36 Arabidopsis thaliana Rosettes at Altered Light Conditions Biotechnical Production of Ethylene in S. Cerevisiae - Insights	Hviid	Anne-Mette
General and Specific Stress Responses Towards Short Even- Chain Alcohols in Lactic Acid Bacteria Provide Clues for 35 Improving Second Generation Biorefineries Isotopically Nonstationary 13C Metabolic Flux Analysis of 36 Arabidopsis thaliana Rosettes at Altered Light Conditions Biotechnical Production of Ethylene in S. Cerevisiae - Insights from Metabolic Modeling, Cultivation Studies and Enzyme	Hviid Jazmin	Anne-Mette Lara J.
General and Specific Stress Responses Towards Short Even- Chain Alcohols in Lactic Acid Bacteria Provide Clues for 35 Improving Second Generation Biorefineries Isotopically Nonstationary 13C Metabolic Flux Analysis of 36 Arabidopsis thaliana Rosettes at Altered Light Conditions Biotechnical Production of Ethylene in S. Cerevisiae - Insights from Metabolic Modeling, Cultivation Studies and Enzyme 37 Engineering	Hviid Jazmin	Anne-Mette Lara J.
General and Specific Stress Responses Towards Short Even- Chain Alcohols in Lactic Acid Bacteria Provide Clues for 35 Improving Second Generation Biorefineries Isotopically Nonstationary 13C Metabolic Flux Analysis of 36 Arabidopsis thaliana Rosettes at Altered Light Conditions Biotechnical Production of Ethylene in S. Cerevisiae - Insights from Metabolic Modeling, Cultivation Studies and Enzyme 37 Engineering Microbial Production of Cis, Cis-Muconic Acid By Klebsiella	Hviid Jazmin Johansson	Anne-Mette Lara J. Nina
General and Specific Stress Responses Towards Short Even- Chain Alcohols in Lactic Acid Bacteria Provide Clues for 35 Improving Second Generation Biorefineries Isotopically Nonstationary 13C Metabolic Flux Analysis of 36 Arabidopsis thaliana Rosettes at Altered Light Conditions Biotechnical Production of Ethylene in S. Cerevisiae - Insights from Metabolic Modeling, Cultivation Studies and Enzyme 37 Engineering Microbial Production of Cis, Cis-Muconic Acid By Klebsiella	Hviid Jazmin Johansson	Anne-Mette Lara J. Nina
General and Specific Stress Responses Towards Short Even- Chain Alcohols in Lactic Acid Bacteria Provide Clues for 35 Improving Second Generation Biorefineries Isotopically Nonstationary 13C Metabolic Flux Analysis of 36 Arabidopsis thaliana Rosettes at Altered Light Conditions Biotechnical Production of Ethylene in S. Cerevisiae - Insights from Metabolic Modeling, Cultivation Studies and Enzyme 37 Engineering Microbial Production of Cis, Cis-Muconic Acid By Klebsiella 38 Pneumoniae.	Hviid Jazmin Johansson	Anne-Mette Lara J. Nina
General and Specific Stress Responses Towards Short Even- Chain Alcohols in Lactic Acid Bacteria Provide Clues for 35 Improving Second Generation Biorefineries Isotopically Nonstationary 13C Metabolic Flux Analysis of 36 Arabidopsis thaliana Rosettes at Altered Light Conditions Biotechnical Production of Ethylene in S. Cerevisiae - Insights from Metabolic Modeling, Cultivation Studies and Enzyme 37 Engineering Microbial Production of Cis,Cis-Muconic Acid By Klebsiella 38 Pneumoniae. Effects of Pyruvate Formate Lyase Inactivation in Klebsiella	Hviid Jazmin Johansson Jung	Anne-Mette Lara J. Nina Hwi-Min

Prediction and Design of Novel Metabolic Pathways for the		
41 Production of Desired Chemicals	Kim	Dong In
Integration of Transcriptomic Data in Genome-Scale Metabolic		
Models Predicts in Vitro Intracellular Central Carbon Metabolic		
Fluxes with High Correlation in Escherichia coli and		
42 Saccharomyces Cerevisiae	Kim	Min Kyung
Model-Driven Metabolic Engineering of Escherichia coli for		
Improving Conversion of Lignocellulose-Derived Sugars to		
43 Ethanol	Kim	Joonhoon
44 Yeast Cell Factories for Production of Biobutanol	Krivoruchko	Anastasia
Engineering of a Stable, Syntrophic Microbial Coculture for		
45 Enhanced H2 Production	LaSarre	Breah
Redirecting Photosynthetic Reducing Power into Light-Driven		Lærke Marie
46 Biosynthesis of Bioactive Natural Compounds	Lassen	Münter
Biosynthesis of 2-Hydroxyacid Containing		
Polyhydroxyalkanoates in Metabolically Engineered Ralstonia		
47 Eutropha	Park	Si Jae
Biosynthesis of Polyhydroxyalkanoates in Recombinant		
Ralstonia Eutropha Engineered to Utilize Sucrose As a Carbon		
48 Source	Park	Si Jae
Comparative Cross-Strain Analysis of Stress Resistance		
49 Mechanisms Revealed By Transposon Insertion Sequencing	Lennen	Rebecca M.
Construction of a Efficient Xylose Metabolic Pathway in		
50 Saccharomyces Cerevisiae for Ethanol Production	Li	Yunjie
51 Development of a Yeast Cell Factory for Resveratrol Production		Mingji
Modelling Population Dynamics of Pseudomonas Putida KT2440		
52 Under Various Growth Conditions	Lieder	Sarah
Carbon Flux-Associated Redox Rebalancing By Static and		
53 Dynamic Control	Lim	Jae Hyung
Enhanced Utilization of Non-Favored Sugars from Marine		
54 Biomass By Re-Designed <i>Escherichia coli</i>	Lim	Hyun Gyu
Comprehensive Study of Metabolic Flux Rewiring in E. coli		
55 Knockout Strains	Long	Christopher P.
Metabolic Engineering of Pseudomonas Putida KT2440 for the		
Production of Compounds Derived from the Shikimic Acid		
56 Pathway	Lorenz	Silvia
Metabolic Engineering of Yeast for Commercial Production of		
57 Succinic Acid	Los	Alrik
Vitamin Analogs As Antiinfectives: Occurrence, Mode of Action,		
58 Metabolism and Production	Mack	Matthias
Genome-Scale Strain Designs Based on Regulatory Minimal Cut		
59 Sets	Mahadevan	Radhakrishnan
A Bayesian Design of Experiments for Ensemble Modelling of		e a co
60 Metabolic Networks	Manesso	Erica

Developing an Integrated Systems and Synthetic Biology		_
61 Platform for Gas Fermenting Acetogens	Marcellin	Esteban
Rational Genome Engineering with Genetically Encoded		
62 Biosensors at Single-Cell Scale	Marienhagen	Jan
An Integrated Multi-Omics and Computational Characterization		
of Seven Unique Escherichia coli Production Strains Commonly-		
63 Used in Industrial Biotechnology	Monk	Jonathan M.
Computationally Guided Characterization of Carboxylic Acid		
64 Reductases for Expanding Aldehyde Bioproduction	Moura	Matthew
65 K-Optforce: Strain Design Using Kinetic Information	Mueller	Thomas
Super E. coli" through Automated Reaction Network Generation		
66 and Genome Scale Models	Hadadi	Noushin
Strategies for Improving Renewable Phenol Biosynthesis in		
67 Engineered Escherichia coli	Nielsen	David R.
Synthesis of Nylon 6,5 from Biologically Prepared 5AVA By		
68 Metabolically Engineered <i>Escherichia coli</i>	Oh	Young Hoon
Metabolic Flux Analysis of Isopropyl Alcohol-Producing		. 34.16 (10011
69 Escherichia coli	Okahashi	Nobuyuki
The D494G Point Mutation in the Bifunctional Alcohol and	Okariasiii	Nobuyuki
Aldehyde Dehydrogenase (adhE) of Clostridium Thermocellum	Olson	Daniel
70 Leads to Improved Ethanol Production	Oison	Daniei
Identifying Bottlenecks in Engineering Efficient Cellobiose		
Metabolism (Evidence for putative promoters within operon	De de Alexan	VC 1 - 2
71 and TCA cycle imbalance)	Parisutham	Vinuselvi
Building Metabolic Engineering Tools to Better Understanding		
Product Production from Microbial Sources: Using the		
Cyanobacterium Synechocystis Sp. PCC 6803 for Astaxanthin		
72 Production	Peebles	Christie A.M.
Steering Prokaryotic Gene Expression Using Engineered		
73 Riboswitches	Peters	Gert
Sensor-Selector Strategy for Directed Evolution of Biosynthetic		
74 Pathways	Raman	Srivatsan
Rapid Evaluation of Itaconic Acid Production Strategies in		
75 Saccharomyces Cerevisiae	Roubos	Hans
75 Succession of the Control of the		
Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking		
·		
Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking	Sabido	Andrea
Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are	Sabido	Andrea
Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are 76 Coutilized	Sabido San	Andrea Ka-yiu
Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are 76 Coutilized Metabolic Transistor Strategy for Controlling Electron Transfer		
Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are 76 Coutilized Metabolic Transistor Strategy for Controlling Electron Transfer 77 Chain in Escherichia coli		
Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are 76 Coutilized Metabolic Transistor Strategy for Controlling Electron Transfer 77 Chain in Escherichia coli Ubiquinone Accumulation Improves Osmotic-Stress Tolerance 78 in Escherichia coli	San	Ka-yiu
Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are 76 Coutilized Metabolic Transistor Strategy for Controlling Electron Transfer 77 Chain in Escherichia coli Ubiquinone Accumulation Improves Osmotic-Stress Tolerance	San	Ka-yiu
Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are 76 Coutilized Metabolic Transistor Strategy for Controlling Electron Transfer 77 Chain in Escherichia coli Ubiquinone Accumulation Improves Osmotic-Stress Tolerance 78 in Escherichia coli Transport and Metabolism of Fumaric Acid in Saccharomyces 79 Cerevisiae	San Sevin	Ka-yiu Daniel C.
Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are 76 Coutilized Metabolic Transistor Strategy for Controlling Electron Transfer 77 Chain in Escherichia coli Ubiquinone Accumulation Improves Osmotic-Stress Tolerance 78 in Escherichia coli Transport and Metabolism of Fumaric Acid in Saccharomyces 79 Cerevisiae Implementing the Formose Pathway for Conversion of	San Sevin	Ka-yiu Daniel C.
Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are 76 Coutilized Metabolic Transistor Strategy for Controlling Electron Transfer 77 Chain in Escherichia coli Ubiquinone Accumulation Improves Osmotic-Stress Tolerance 78 in Escherichia coli Transport and Metabolism of Fumaric Acid in Saccharomyces 79 Cerevisiae	San Sevin	Ka-yiu Daniel C.

	Final and a Marine Marine Indian Control of the Control		
	Engineering the Valine Assimilation Pathway to Produce	Calana	Was ta
81	Biochemicals and Fuels in S. Cerevisiae	Solomon	Kevin
	Systems Metabolic Engineering of <i>Escherichia coli</i> for the		
82	Production of Fumaric Acid	Song	Chanwoo
	Engineering the Glycolytic Pathway of E. coli K12 Mutants By		
	Gene Deletions and Introduction of a Fructose 6-Phosphate		
83	Aldolase	Sprenger	Georg A.
	The Potential of Lactic Acid Bacteria As Microbial Factory for		
84	Pentanol Isomer Production	Starlit	Karen I.
	Engineering Saccharomyces Cerevisiae for the Production of	_	
	Hexadecanol and Octadecanol	Stuart	David
86	L-Methionine Production with Recombinant E. Coli	Takors	Ralf
	Engineering of Artificial Enzyme Complexes Mediated By		
	Heterospecific Coiled-Coil Zippers or Synthetic Protein-Protein		
87	Interaction Domains in Saccharomyces Cerevisiae	Thomik	Thomas
	Driven By Demand Metabolic Engineering - Recombinant		
88	Rhamnolipid Synthesis in Pseudomonas Putida As an Example	Tiso	Till
	SMET: Systematic Multiple Enzyme Targeting for Rational		
89	Design of Optimal Strains	Trinh	Cong T.
	Mathematical Modelling of Apoptosis for GS-NS0 Cell Culture		
	Secreting Monoclonal Antibody: Linking Gene to Growth,		
90	Metabolism and Metabolic Stress	Usaku	Chonlatep
	Strong Reduction of Acetate Overflow in <i>Escherichia coli</i> By		
91	Systems Metabolic Engineering	Valgepea	Kaspar
	Cytosolic Acetyl-CoA Synthesis By Pyruvate-Formate Lyase in		
92	Yeast	van Rossum	Harmen M.
	Itaconic Acid Production in <i>Escherichia coli</i> By Overexpression		
	of Citrate Synthase, Aconitase, and <i>Cis</i> -Aconitate		
93	Decarboxylase	Vuoristo	Kiira
	Metabolic Engineering of Klebsiella Pneumoniae for 1-Butanol		
94	Production By Using Crude Glycerol	Wang	Miaomiao
	Single-Cell Bioreactors Boost Bioprocess Development: New		
95	Insights into Cellular Metabolism	Wiechert	Wolfgang
	Corynebacterium Glutamicum Engineered As a Designer Bug for		
96	the Production of Pyruvate and Succinate	Wieschalka	Stefan
	Systems Metabolic Engineering of Corynebacterium		
	Glutamicum to Overcome the Cellular Toxicity Derived from		
97	Cellulosic Hydrolysate	Woo	Han Min
	Development of Genetic Tools for the Metabolic Engineering of		
98	the Thermophilic Acetogen Moorella Thermoacetica	Woolston	Benjamin
	Construction of Fast Xylose-Fermenting Yeast Based on		
	Industrial Ethanol-Producing Diploid Saccharomyces Cerevisiae		
99	By Rational Design and Adaptive Evolution	Yang	Junjie

Bacterial Cell Factory for Production of Scyllo-Inositol, a		
100 Potential Therapeutic Agent for Alzheimer's Disease	Yoshida	Ken-ichi
Construction of a Hybrid Pathway for Selectively Removing		
101 Nitrogen Atom from Carbazole	Yu	Во
	TU	ВО
Protein Design for a De Novo Synthetic Pathway of Microbial		
102 Production of 1,3-Propanediol from Sugar	Zeng	An-ping
Systematic Characterization of Protein–Protein Interface for the		
Development of Artificial Biomachinery for Metabolic		
103 Engineering	Zeng	An-Ping
Dynamic Control of Metabolism through Engineering Ligand-	20116	7
Induced Allosteric Regulation Based on a New Concept of	_	
104 Thermodynamic Cycle of Protein Dynamics	Zeng	An-Ping
105 Development of the First Scalable Rubbery Polyester	Zhang	Kechun
Co-Culture Based Modular Engineering for Aromatic and		
106 Aromatic-Derived Compounds Production in E. coli	Zhang	Haoran
A Fast Metabolic Sensor for <i>in vivo</i> Cytosolic Phosphate		
107 Concentration in Saccharomyces cerevisiae	Zhang	Jinrui
10/ Concentration in Succinarollyces cerevisiae	Lilalig	JIIII UI
Cooperative Co-Culture of Escherichia coli and Saccharomyces		
108 Cerevisiae for Overproduction of Paclitaxel Precursors	Zhou	Kang
Systematic Engineering of Lipid Metabolism for Fatty-Acid-		
109 Based Biofuel Production	Zhou	Yongjin
200 1111 1111 111111		- 03
Accessing Matabalia Passance to Ingressed Cubetrate Loading		
Assessing Metabolic Response to Increased Substrate Loading		5 1 . 5
143 Rate in Mixed-Culture Fermentation of Waste Water	Hoelzle	Robert D
Production of Enantiomerically Pure (S)-3-Hydroxybutyrate		
221 Using Metabolically Engineered Saccharomyces Cerevisiae	Yun	Eun Ju
Characterization of High Ethanol Producing Properties of		
Recombinant Saccharomyces Cerevisiae ETS3 Transformed with		
	Dark	Цаосоора
222 a Mutated SPT15 Gene	Park	Haeseong
Engineering of a protein translocation system in Rhodococcus		
225 jostii RHA1 for the secretion of ligninases	Roccor	Raphael
Synthetic Design of Pathways and Organelles for Photosynthetic		
226 Terpene Production	Kim	Yong Kyoung
		_ ,
Production of Anteiso-Branched Fatty Acids in Escherichia coli,		
	Havashalk	Dobort M.
227 Next Generation Biofuels with Improved Cold-Flow Properties	Hauschalter	Robert W.
228 A Functional Rect Gene for Recombineering of Clostridium	Dong	Hongjun
A Strategy for Design, Redesign, and Optimization of Ethylene		
234 Production in E. coli	Eckert	Carrie
7 77	<u> </u>	
Screening predicted CVP710 family members for the preduction		
Screening predicted CYP719 family members for the production		
237 of benzylisoquinoline alkaloids in Saccharomyces cerevisiae	Narcross	Lauren
Regulation of yeast central metabolism by enzyme		
239 phosphorylation	Oliveira	Ana Paula
		-

Dynamic Metabolic Profiling of Cyanobacteria Under Conditions		
240 of Nitrate Depletion	Hasunuma	Tomohisa
Towards Production of Short Chain Fatty Acids and Adipic	Acid	
241 in Escherichia Coli	Sauer	Michael
Glutathione Production Using Yeast Engineered for Memb	rane	
242 and Metabolism	Hara	Kiyotaka Y.
Development of Efficient GABA Production System By		
Introduction of Synthetic Protein Complex Between Gada/	[/] B and	
248 GadC	Hong	SoonHo
Construction of Novel Fumarate Sensing Chimeric Two-		
249 Component System in Escherichia coli	Hong	SoonHo

Poster Group 2 (Tuesday, June 17 and Wednesday, June 18)

Poster Number	Abstract Title	Last Name	First Name
	Targeted Proteomics Enabled Metabolic Engineering of		
31	Clostridium Cellulolyticum for n-Butanol Production	Gaida	Stefan M.
		Alonso-	
110	Engineering a Balanced Mevalonate Pathway in E.coli	Gutierrez	Jorge
	Yeast Mitochondrial Engineering: Targeting the Powerhouse of		
111	the Cell for Advanced Biofuel Production	Avalos	Jose L.
	Combining Elementary Mode Analysis with a Network		
	Embedded Thermodynamic Approach for Analysis of Microbial		
112	Adipic Acid Production	Averesch	Nils J. H.
	Metabolic Reconstruction of Clostridium Acetobutylicum for		
113	Enhanced Production of Butyric Acid	Bang	Junho
	Development of Next Generation Yeast Strains for Ethanol		
114	Production from Lignocellulosic Feedstocks	Boer	Viktor
	Identifying the Source of Strain-to-Strain Variability in		
	Isoprenoid Production Capacity of <i>E. coli</i> Using a Systems		
115	Biology Approach	Bongers	Mareike
	Rational Metabolic Engineering of Baker's Yeast for Production		
116	of 3-Hydroxypropionic Acid	Borodina	Irina
	Understanding and Overcoming Monoterpene Toxicity in Yeast		
117	for the Production of Renewable Jet Fuels	Brennan	Timothy
	Molecular Approaches to Improve 1-Butanol Tolerance and		
118	Production in <i>Escherichia coli</i>	Bui	Le Minh
	Metabolic Engineering for Production of 5-Aminovalerate and		
119	Glutarate Using Escherichia coli	Chae	Tong Un
	Synthetic Regulatory Small RNAs for Genome-Wide Metabolic		
120	Engineering	Chae	Tong Un
	Analysis of Aerobic-to-Anaerobic and Anaerobic-to-Aerobic		
121	Switches in E. coli Using Large-Scale Dynamic Metabolic Models	Chakrabarti	Anirikh
	Direct Fermentation for Isobutene, Butadiene and Propylene		
	Production: A Highway to Renewable Plastics, Synthetic Rubber		_
122	and Fuels	Chayot	Romain
	Biosynthesis of Lactate-Containing Polymers in Metabolically	- .	
123	Engineered Escherichia coli	Choi	So Young
12.	Production of Native-Sized Spider Dragline Silk Protein through	Charac	Hannah
124	Metabolic Engineering Approach in <i>Escherichia coli</i>	Chung	Hannah
435	Splitting the E. coli Metabolism for the Production of Fructose-6-		Dieter
125	P Derived Chemicals	Coussement	Pieter
425	Engineering S. Cerevisiae Metabolism for Efficient Production of		Chaule -
126	Acetyl-CoA Derived Products	Denby	Charles
427	Engineering Yeast to Produce Fatty Acid-Derived Fuels and	d'Espaini	Loopold
127	Chemicals	d'Espaux	Leopold

	Engineering a Functional Deoxyxylulose Phosphate (DXP)		
129	Pathway in Saccharomyces Cerevisiae	Dietzel	Kevin
	The Importance of the Lipid Biosynthetic Pathway for		
131	Glycolipids Production in Engineered E. coli Cells	Faijes	Magda
	Micrornas and Apoptosis in Cell Culture - Application for		
132	Enhanced Biological Production and Cancer Treatment	Shiloach	Joseph
	Implications of the Assumptions on Intracellular Metabolic		
133	Operational States in Metabolic Control Analysis	Fengos	Geogios
134	Novel Biosensors for Optimizing Yeast Cell Factories	David	Florian
	13C Metabolic Flux Analysis of Co-Culture Systems: A Novel		
135	Approach	Gebreselassie	Nikodimos A.
	Targeted Omics Informed Engineering to Improve C5 Alcohol		
136	Production in E. coli	George	Kevin W.
	A Novel Design of a Translation Coupling-RNA Scaffold System	U	
	to Improve the Efficiency of Molecular Chaperone on		
137	Recombinant Proteins Solubilization	Geraldi	Almando
	2-Butanol and Butanone Production in Saccharomyces		
	Cerevisiae through the B12 Dependent Dehydratase Pathway		
138	Using a Tev-Based Expression System	Ghiaci	Payam
130	Tombour Expression Expression	Gopalakrishna	,
139	Using Metrxn for Flux Elucidation and Model Reconstruction	n	Saratram
	Use of Transporter Plug-Ins for Enhanced Productivity and		
	Reduced Byproduct Formation of Bioalkanes and Related		
140	Compounds	Grant	Chris
	Using Protein Scaffolds to Redirect Photosynthetic Reducing	Henriques de	
142	Power for Biosynthesis of Natural Products	Jesus	Maria
	Genetic Engineering to Produce Higher Alcohols in Yeast		
144	Saccharomyces cerevisiae	Ishii	Jun
	Directed Evolution of Terpene Synthases Using High-		
	Throughput Colorimetric Screening Based on Substrate		
145	Consumption	Iwasaki	Miki
	Enhanced Biofuel Production through Coupled Consumption of		
146	Acetic Acid and Cellulosic Sugars By Engineered Yeast	Jin	Yong-Su
	Lysate of Engineered Escherichia coli Supports Conversion of		- 6 - 1
	Glucose to 2,3-Butanediol with Near-Theoretical Yields and		
147	Ultrahigh Productivity	Kay	Jennifer E.
217	Evolution Reveals a Glutathione-Dependent Mechanism of 3-	1	
148	Hydroxypropionic Acid Detoxification	Kildegaard	Kanchana R.
170	Optimality of Microbial Metabolism with Biosynthetic	acbaara	arioriaria iti
149	Heterologous Reactions	Kim	Dong In
143	Deciphering Thermodynamics in Metabolic Networks: A Priority	121111	20116 111
150	List of Candidates for Metabolomics	Kiparissides	Alexandros
	Malic Acid Production By Aspergillus Oryzae	Knuf	Christoph
131	Mane Acia i Todaction by Aspergillus Oryzae	MIUI	Cilibrohii

F	easibility Studies of New Strategy for Ultra-High-Throughput		
S	creening (uHTS) of Novel Enzyme By in Vitro		
C	Compartmentalization (IVC) Using Microbeads from		
152 N	Metagenomic Resources	Ко	Kyong-Cheol
R	Replacement of the Saccharomyces Cerevisiae Acetyl-CoA		
S	ynthetases By Acetylating Acetaldehyde Dehydrogenase for		
	Cytosolic Acetyl-CoA Synthesis	Kozak	Barbara U.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
D	Decorating Bacterial Surfaces By Designer Molecules Advances		
	he Fundamental Knowledge about Bacterial Growth	Kuru	Erkin
	Metabolic Modulation in Response to Chemical-Induced Signal	Rara	LIKIII
	ransduction in Chlamydomonas Reinhardtii	Lee	Jung-eun
	Metabolically Engineered Escherichia coli for Isoprene	LEE	Julig-Euli
	Biosynthesis	Lin	Chun Li
150 B	Biosynthesis	Liu	Chun-Li
	unplication of a Constically Encoded Matabalita Conserfer		
	Application of a Genetically-Encoded Metabolite Sensor for	N.A.a.la.v	Doning
	Single Cell Analysis and Development of Production Strains	Mahr	Regina
	On the Effects of Phenotype Prediction Methods over Strain		5 1
	Design Algorithms. a Multi-Objective Approach	Maia	Paulo
	exploring Bacterial Microcompartments to Establish Orthogonal		
	Metabolism	Mampel	Joerg
R	Redemption: Reduced Dimensional Ensemble Modeling and		
160 P	Parameter Estimation	Manesso	Erica
N	Metabolic Engineering of Yeast Central Metabolism for Higher		
161 A	Alcohol Production	Matsuda	Fumio
Т	he Impact of Orthogonal Gene Expression on Heterologous		
162 P	Pathway Productivity	McArthur	George H.
Т	ools to Resolve Compartmentalized Metabolism in		
163 N	Mammalian Cells	Metallo	Christian M.
Е	Ingineering Improved Productivity of 1,4-Butanediol in E. coli –		
	Kinetic Modeling Approach	Miskovic	Ljubisa
	Designing a Nitrogen Fixation Circuit in an Oxygenic		,
	Photosynthetic Organism	Mueller	Thomas
F	ffect of CO Transfer on Hydrogen Production By		
	Carboxydotrophic Archeon <i>Thermococcus Onnurineus</i> NA1	Na	Jeong Geol
	treamlining Central Catabolism for à La Carte Activation of		Jeong Geor
	Glycolysis	Nikel	Pablo I.
	owards a Chassis Organism for Synthetic Biology	Noack	Stephan
170 1	owards a Chassis Organism for Synthetic Biology	INUACK	Stephan
	Computing Protocome Abundance and Activity with a Conome		
	Computing Proteome Abundance and Activity with a Genome-	OPrion	Edward J.
	cale Model of Metabolism and Gene Expression	OBrien	Euwaiù J.
	Deciphering Dynamic Regulation Patterns of Cellulose-	Ola 4 - U -	N dialactic d
	Degrading Enzymes in Anaerobic Fungi	O'Malley	Michelle A.
	Aspergillus Terreus Isolated from the Brazillian Diversity:	B 1:	A1 / 1:
173 G	Genomic Variability Associated to Lovastatin Production	Parachin, N.S.	Nádia

Regulation of Ancillary Reactions Around the Central Carbon		
174 Metabolism of E. coli	Parisutham	Vinuselvi
Examining the Complex Transcriptional Response of Perturbing		
Anthranilate Synthase in the Terpenoid Indole Alkaloid Pathway		
175 in Catharanthus Roseus	Daablaa	Christia A AA
	Peebles	Christie A.M.
Discovery of Gene Overexpression Targets for Biofuel Product		
176 Tolerance in Yeast	Peña	Pedro V.
177 Microbial Production of Renewable Monoethylene Glycol	Pereira	Brian
Improving the Internal Flux Distributions from Genome Scale		
178 Metabolic Models of S. Cerevisiae	Pereira	Rui
176 Wetabolic Wodels of S. Cerevisiae	reieira	Nui
TI V . D. II . V . A A A . II . I . D. II . A . I . I I		
The Yeast Pathway Kit: A Method for Rational or Combinatorial		
179 Metabolic Pathways Design in Saccharomyces Cerevisiae	Pereira	Filipa
Efficient Searching and Annotation of Metabolic Networks		
180 Using Chemical Similarity	Pertusi	Dante
Development of a Highly Efficient Gene Delivery System for		
181 Syngas Fermenting Clostridia	Philipps	Gabriele
Retooling Glycolysis in Saccharomyces Cerevisiae for More	типррз	Gubriele
	D'al a ca	
182 Efficient Isoprenoid Production	Pickens	Lauren
Systematic Characterization of Intracellular Metabolic States		
183 through Flux Directionality Profile Analysis	Pinto Vieira	Joana
184 Trans-Regulatory Elements As Tools for Metabolic Engineering	Politz	Mark
Multiplex Amino Acid Metabolism Engineering for Increased		
185 Production of L-Ornithine in Yeast	Qin	Jiufu G.
103 Froduction of E Officiality Teast	QIII	Julu G.
Improved N-alkanes Production in Escherichia coli By Spatial		
186 Organization of Alkane Biosynthetic Pathway Enzymes	Rahman	Ziaur
Tools for Advancing Genome Engineering on the Protein,		
187 Pathway, and Genome Scale	Pines	Gur
Ultra-High-Throughput Screening of Enzyme Libraries with		
188 Droplet-Based Microfluidics	Romero	Philip
	5111 5. C	····-
190 Kingtic Pacanstruction and Analysis of Enhingelinia Metabolism	Savoglidic	Georgies
189 Kinetic Reconstruction and Analysis of Sphingolipid Metabolism	Savogiiuis	Georgios
De Novo Production of Monoterpenoic Acids with	- ·	
190 Pseudomonas Putida	Schrader	Jens
A Computationally-Driven Metabolic Engineering Strategy to		
191 Increase Cellulose Production in Plants	Senger	Ryan S.
Metabolic Engineering of an Endogenous Pathway for n-Butanol		
192 Production in Saccharomyces Cerevisiae	Shi	Shuobo
Development of an in silico Tool of Novel Metabolic Pathway		2.7.0.0.0
	Chirai	Tomologue
193 Designs for Microbial Productions	Shirai	Tomokazu
Production of Fatty Acid Derived Biofuels in Saccharomyces		
194 Cerevisiae	Siewers	Verena
Rapid One-Step Inactivation of Single or Multiple Genes in		
195 Escherichia coli	Song	Chanwoo

Pigment-Based, Low-Cost, Portable Micronutrient Status Tests		
196 Using Engineered Bacteria	Styczynski	Mark P.
The Role of Trehalose Metabolism in Saccharomyces cerevisiae		
197 from a Quantitative Approach	Mendez	Camilo A.
Characterization of Anaerobic Central Metabolism to Improve		
198 Succinate Production in Enterobacter Aerogenes	Tajima	Yoshinori
Expanding Biosynthetic Pathways Based on Thermodynamic		
199 Preferences	Tashiro	Yohei
Fatty-Acid Production in Yeast through Reversal of the Beta-		
200 Oxidation Cycle	Teixeira	Paulo G.
Increased 3-Hydroxypropionic Acid Production from Glycerol		
Based on the Genome-Scale Metabolic Simulation in		
201 Escherichia coli	Tokuyama	Kento
	•	
Improving Dipicolinic Acid Production By Bacillus subtilis		
203 during Stationary Phase Based on ¹³ c-Metabolic Flux Analysis	Toya	Yoshihiro
Construction of E. coli Reporter Strains for the Study of Stress-	ТОУИ	1031111110
204 Answer Regulator Proteins	Trachtmann	Natalia
Rational Design of Modular Cells for Efficient Combinatorial	Hachthann	ivataiia
	Trinh	CongT
205 Biosynthesis of Designer Bioesters	1111111	Cong T.
Design and Construction of an Artificial Nonmevalonate Operon	Taura	Van::
206 of Escherichia coli	Tsuge	Kenji
Lactic Acid Production from Xylose By Engineered	-	T '
207 Saccharomyces Cerevisiae	Turner	Timothy L.
200 Mardal Driver Marchanistic Anchoric of Adoutive DNAD Martalians	114	lass
208 Model Driven Mechanistic Analysis of Adaptive RNAP Mutations	Utrilla	Jose
Carbon Dioxide Fixation By Calvin-Cycle Enzymes Improves		
209 Ethanol Yield in Yeast	van Maris	Antonius J.A.
Rational Engineering of the Methylerythritol Phosphate		
210 Pathway through Metabolic Control Analysis	Volke	Daniel
Comprehensive Evaluation of Two Genome-Scale Metabolic		
211 Network Models of Scheffersomyces Stipitis	Wang	Jin
Genome Scale Metabolic Modeling Reveals New Insights into		
Biomass Production in the Marine Sponge Amphimedon		
212 Queenslandica	Watson	Jabin
Quorum-Sensing Linked RNAi for Dynamic Pathway Control in		
213 Saccharomyces Cerevisiae	Williams	Thomas C.
Balancing Flux through Secondary Metabolic Pathways in Plant		
214 Culture Systems	Wilson	Sarah
Optimization of Multi-Gene Biological Systems Using High-		
Throughput DNA Assembly, Sequencing, and Model-Guided		
215 Search Strategies	Woodruff	Lauren B. A.
Evaluation of Biosynthetic Pathways for Conversion of Natural		
216 Gas to Liquid Fuels	Woolston	Benjamin
High-Efficiency Scarless Genetic Modification Method in		-
217 Escherichia coli without Counterselection	Yang	Junjie
	U	· J -

	Metabolic Engineering of a Biosensor-Based Screening Platform		
218	in Yeast	Zhang	Jie
		- 0	
	Metabolic Engineering for Production of Valuable Chemicals		
219	Based on Escherichia coli Strains Designed in silico	Zhang	Xiaolin
213	Hy-Dynfba: A Software Platform to Build Large Models, Hybrid	8	7.1.0.0
220	in Time Scale	Nikerel	Emrah
220	Comparative Metabolomic Study of Anaerobic and Aerobic	TTIKETET	Lillian
	Processings of Metabolite Sample Preparation for Clostridium		
222	Acetobutylicum	Kim	Sooah
223	Identification and Characterization of a Processive	KIIII	Jouan
	Endoglucanase from a Marine Bacterium As a Means to		
224		Loo	Haa lin
224	Substitute Cellulbiose Hydrolases	Lee	Hee Jin
	Enhancement of Hyaluronic Acid Molecular Weight By Re-		
	Direction of Metabolic Fluxes in Engineered Lactococcus Lactis		
229	Cultures	Kaur	Mandeep
	High-Throughput Screening of Metabolite Producers Using		
230	Synthetic Suicide Riboswitch in Saccharomyces Cerevisiae	Lee	Sang-Woo
	A Computational Method to Construct an Extensive Metabolic		
231	Pathway Database	Araki	Michihiro
	Development and Analysis of High-Light Stress Tolerant Strain		
232	of Synechocystis Sp. PCC 6803	Yoshikawa	Katsunori
	Transport Proteins for Itaconic Acid Production in Aspergillus		
233	Niger	Steiger	Matthias
	Down-regulation of competing pathways increases (+)-		
235	valencene production in Nicotiana benthamiana	Cankar	Katarina
	Intracellular Metabolomics of Microorganisms for Metabolic		
236	Engineering	McCloskey	Douglas
	Immediate product-process separation strategies for microbial		
238	fuel production	Jones	Patrik R.
	Model Based Engineering of Pichia pastoris Central Metabolism		
243	Enhances Recombinant Protein Production	Mattanovich	Diethard
	Deregulation of Purine Pathway in Bacillus Subtilis and Its Use		
244	in Riboflavin Biosynthesis	Wang	Zhiwen
	Comparative Genomic and Transcriptomic Analysis Reveal		
	Genetic Characteristics Related to Industrially Riboflavin		
245	Production in Bacillus Subtilis	Wang	Zhiwen
	Reverse Metabolic Engineering of Bacillus Subtilis for Xylose		
246	Utilization and Acetoin/ 2,3-Butanediol Production	Chen	Tao
2.0		-	
	Automatic design of optimal producers using a novel approach		
	based on elementary flux modes (EFMs), minimal cut sets	Jungreuthmay	
247	(MCSs), and binary integer programming (BIP)	er	Christian
	(222)) and and I medal kradianining (pi) I	<u> </u>	2.11.00.011