Metabolic Engineering X- Poster Presentation Schedule Poster Group 1 (Sunday, June 15 and Monday, June 16)

Poster Number	Abstract Title	Last Name	First Name
	The Genetic and Metabolic Regulation of Rhamnolipids		
	Biosynthesis in Pseudomonas Aeruginosa Reveals New	Abdel-	
	Engineering Strategies for Heterologous Expression	Mawgoud	Ahmad M.
	Isotopically Nonstationary 13C Flux Analysis of		
	2 Isobutyraldehyde Production in Synechococcus Elongatus	Adebiyi	Adeola
	Characterization of LDH Genes for L-Lactic Acid Production in		
3	3 Pichia Pastoris	Almeida	Pollyne B. A.
	Identification of Key Metabolite Concentrations and Enzyme		
	Saturations Determining the Physiological States of Glucose-Fed		
4	E. coli for the Production of 1,4-Butanediol	Andreozzi	Stefano
	New Advances in 13C Metabolic Flux Analysis: Complete-MFA,		
Į.	5 Co-Culture MFA and Dynamic MFA	Antoniewicz	Maciek R.
	Parallel Labeling Experiments: A Novel Approach for Validating		
(5 Metabolic Network Models	Au	Jennifer
	Synthetic Microbial Metabolism Refactoring for the Production		
-	7 of a Chemical Synthon, 2,4-Dihydroxybutyric Acid	Auriol	Clément
	Implementation of a Disassociated Fatty Acid Synthase System		
	(FAS type II) in Saccharomyces Cerevisiae for Fatty Acid and		
8	3 Wax Ester Production	Azevedo	Flávio
	Production of 4-Hydroxybutyric Acid By Metabolically		
	Engineered Mannheimia Succiniciproducens and Its Conversion		
9	eto Gamma-Butyrolactone By Acid Treatment	Bang	Junho
	Challenges in Reverse Engineering of Industrial Fermentation		
1() Strains	Benjamin	Kirsten R.
	Metabolic Engineering for Ricinoleic Acid Production in Y.		
11	L Lipolytica	Beopoulos	Athanasios
	Fatty Acid Overproduction in a Genetically Engineered Puryvate		
12	2 Decarboxylase-Negative Strain of Saccharomyces Cerevisiae	Bergman	Alexandra
	Isolation, Characterization and Metabolic Engineering of a		
13	3 Thermophilic Bacillus for Green Chemical Production	Bosma	Elleke F.
	Controlled Protein Degradation for Development of Metabolite		
14	1 Valves	Brockman	Irene
	Flexible and User Friendly Tools for the Incorporation of		
15	5 Fluxomics Data into Metabolic Models	Carreira	Rafael
	Unraveling the Inhibitory Effects of Acetate on Ethanol		
16	5 Production in Cen.PK	Chakrabarti	Anirikh
	Understanding and Optimizing Free Fatty Acid Production in		
17	7 Synechocystis Sp. PCC 6803	Cheah	Yi Ern
18	3 Novel Acetyl-CoA Transfer Route in Saccharomyces Cerevisiae	Chen	Yun
19	9 Microbial Production of Short-Chain Alkanes	Choi	So Young

High-Throughput Screening System and Its Biotechnological		
20 Applications	Choi	Jong Hyun
Overcoming Inefficient Cellobiose Fermentation By Cellobiose		
21 Phosphorylase in the Presence of Xylose	Chomvong	Kulika
Production of Phenol from Glucose in Escherichia coli through		
22 Metabolic Engineering Approach	Chung	Hannah
Towards Synthetic Phototrophy: Engineering Proton-Pumping		
23 Rhodopsins into E. coli	Claassens	Nico J.
Engineering Anaerobic Amino Acid Production in		
24 Saccharomyces Cerevisiae: Alanine As Case of Study	Cueto-Rojas	Hugo Federico
Cytosolic Acetyl-CoA Platform in Yeast for Biochemicals		
25 Production	Dai	Zongjie
26 Toward a Biosynthetic Route to Sclareol and Amber Odorants	Daviet	Laurent
27 Advanced Production of Faee in a S. Cerevisiae Cell-Factory	de Jong	Bouke Wim
Metabolic Engineering of Cyclic Triterpenoid Production in		
28 Saccharomyces Cerevisiae	Ebert	Birgitta E.
Development & Exploitation of Gene Tools for Metabolic		
29 Engineering in Saccharolytic Clostridia	Ehsaan	Muhammad
30 Novel Methods to Investigate Solvent Toxicity in Bacteria	Fletcher	Eugene
Targeted Proteomics Enabled Metabolic Engineering of		
31 Clostridium Cellulolyticum for n-Butanol Production	Gaida	Stefan M.
Isobutanol Production By an Industrial Saccharomyces		
32 Cerevisiae Strain	Generoso	Wesley Cardoso
Metabolic Engineering of Photorespiratory Bypass Pathways to		
33 Enhance Novel Biofuel Production in Transgenic Plants	Goklany	Sheba
Metabolic Activities and Their Control at the Mitochondria-		
34 Cytosol Interface in CHO Cells	Heinzle	Elmar
General and Specific Stress Responses Towards Short Even-		
Chain Alcohols in Lactic Acid Bacteria Provide Clues for		
35 Improving Second Generation Biorefineries	Hviid	Anne-Mette
Isotopically Nonstationary 13C Metabolic Flux Analysis of		
36 Arabidopsis thaliana Rosettes at Altered Light Conditions	Jazmin	Lara J.
Biotechnical Production of Ethylene in S. Cerevisiae - Insights		
from Metabolic Modeling, Cultivation Studies and Enzyme		
37 Engineering	Johansson	Nina
Microbial Production of Cis,Cis-Muconic Acid By Klebsiella		
38 Pneumoniae.	Jung	Hwi-Min
Effects of Pyruvate Formate Lyase Inactivation in Klebsiella		
39 Pneumoniae and Its Application to Diol Production	Jung	Moo-Young
Bio-Hydrogen Production By Continuous Culture of	-	
40 Hyperthermophilic Archaeon from Carbon Monoxide		
	Kim	Tae Wan
Prediction and Design of Novel Metabolic Pathways for the	Kim	Tae Wan

Integration of Transcriptomic Data in Genome-Scale Metabolic		
Models Predicts in Vitro Intracellular Central Carbon Metabolic		
Fluxes with High Correlation in Escherichia coli and		
42 Saccharomyces Cerevisiae	Kim	Min Kyung
Model-Driven Metabolic Engineering of Escherichia coli for		
Improving Conversion of Lignocellulose-Derived Sugars to		
43 Ethanol	Kim	Joonhoon
44 Yeast Cell Factories for Production of Biobutanol	Krivoruchko	Anastasia
Engineering of a Stable, Syntrophic Microbial Coculture for		
45 Enhanced H2 Production	LaSarre	Breah
Redirecting Photosynthetic Reducing Power into Light-Driven		Lærke Marie
46 Biosynthesis of Bioactive Natural Compounds	Lassen	Münter
Biosynthesis of 2-Hydroxyacid Containing		
Polyhydroxyalkanoates in Metabolically Engineered Ralstonia		
47 Eutropha	Lee	Sang Yup
Biosynthesis of Polyhydroxyalkanoates in Recombinant		
Ralstonia Eutropha Engineered to Utilize Sucrose As a Carbon		
48 Source	Lee	Sang Yup
Comparative Cross-Strain Analysis of Stress Resistance		
49 Mechanisms Revealed By Transposon Insertion Sequencing	Lennen	Rebecca M.
Construction of a Efficient Xylose Metabolic Pathway in		
50 Saccharomyces Cerevisiae for Ethanol Production	Li	Yunjie
51 Development of a Yeast Cell Factory for Resveratrol Production	Li	Mingji
Modelling Population Dynamics of Pseudomonas Putida KT2440		
52 Under Various Growth Conditions	Lieder	Sarah
Carbon Flux-Associated Redox Rebalancing By Static and		
53 Dynamic Control	Lim	Jae Hyung
Enhanced Utilization of Non-Favored Sugars from Marine		
54 Biomass By Re-Designed Escherichia coli	Lim	Hyun Gyu
Comprehensive Study of Metabolic Flux Rewiring in E. coli		
55 Knockout Strains	Long	Christopher P.
Metabolic Engineering of Pseudomonas Putida KT2440 for the		
Production of Compounds Derived from the Shikimic Acid		
56 Pathway	Lorenz	Silvia
Metabolic Engineering of Yeast for Commercial Production of		
57 Succinic Acid	Los	Alrik
Vitamin Analogs As Antiinfectives: Occurrence, Mode of Action,		
58 Metabolism and Production	Mack	Matthias
Genome-Scale Strain Designs Based on Regulatory Minimal Cut		
59 Sets	Mahadevan	Radhakrishnan
A Bayesian Design of Experiments for Ensemble Modelling of		
60 Metabolic Networks	Manesso	Erica
Developing an Integrated Systems and Synthetic Biology		
61 Platform for Gas Fermenting Acetogens	Marcellin	Esteban
Rational Genome Engineering with Genetically Encoded		
62 Biosensors at Single-Cell Scale	Marienhagen	Jan

	An Integrated Multi-Omics and Computational Characterization		
	of Seven Unique Escherichia coli Production Strains Commonly-		
63	Used in Industrial Biotechnology	Monk	Jonathan M.
	Computationally Guided Characterization of Carboxylic Acid		
64	Reductases for Expanding Aldehyde Bioproduction	Moura	Matthew
65	K-Optforce: Strain Design Using Kinetic Information	Mueller	Thomas
	Rational Design & Optimization of a Synthetic Entner-Doudoroff		
66	Pathway for Improved & Controllable NADPH Regeneration	Ng	Chiam-Yu
	Strategies for Improving Renewable Phenol Biosynthesis in		
67	Engineered Escherichia coli	Nielsen	David R.
	Synthesis of Nylon 6,5 from Biologically Prepared 5AVA By		
68	Metabolically Engineered Escherichia coli	Oh	Young Hoon
	Metabolic Flux Analysis of Isopropyl Alcohol-Producing		
69	Escherichia coli	Okahashi	Nobuyuki
	The D494G Point Mutation in the Bifunctional Alcohol and		
	Aldehyde Dehydrogenase (adhE) of Clostridium Thermocellum		
70	Leads to Improved Ethanol Production	Olson	Daniel
	Identifying Bottlenecks in Engineering Efficient Cellobiose		
	Metabolism (Evidence for putative promoters within operon		
71	and TCA cycle imbalance)	Parisutham	Vinuselvi
	Building Metabolic Engineering Tools to Better Understanding		
	Product Production from Microbial Sources: Using the		
	Cyanobacterium Synechocystis Sp. PCC 6803 for Astaxanthin		
		- · ·	
72	Production	Peebles	Christie A.M.
72	Production Steering Prokaryotic Gene Expression Using Engineered Differentiation	Peebles	Christie A.M.
72 73	Production Steering Prokaryotic Gene Expression Using Engineered Riboswitches	Peebles Peters	Christie A.M. Gert
72	Production Steering Prokaryotic Gene Expression Using Engineered Riboswitches Sensor-Selector Strategy for Directed Evolution of Biosynthetic	Peebles Peters	Christie A.M. Gert
72 73 74	Production Steering Prokaryotic Gene Expression Using Engineered Riboswitches Sensor-Selector Strategy for Directed Evolution of Biosynthetic Pathways Denid Evolution of Itegenia Acid Production Strategies in	Peebles Peters Raman	Christie A.M. Gert Srivatsan
72 73 74	Production Steering Prokaryotic Gene Expression Using Engineered Riboswitches Sensor-Selector Strategy for Directed Evolution of Biosynthetic Pathways Rapid Evaluation of Itaconic Acid Production Strategies in	Peebles Peters Raman	Christie A.M. Gert Srivatsan
72 73 74 75	Production Steering Prokaryotic Gene Expression Using Engineered Riboswitches Sensor-Selector Strategy for Directed Evolution of Biosynthetic Pathways Rapid Evaluation of Itaconic Acid Production Strategies in Saccharomyces Cerevisiae	Peebles Peters Raman Roubos	Christie A.M. Gert Srivatsan Hans
72 73 74 75	Production Steering Prokaryotic Gene Expression Using Engineered Riboswitches Sensor-Selector Strategy for Directed Evolution of Biosynthetic Pathways Rapid Evaluation of Itaconic Acid Production Strategies in Saccharomyces Cerevisiae Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking	Peebles Peters Raman Roubos	Christie A.M. Gert Srivatsan Hans
72 73 74 75	Production Steering Prokaryotic Gene Expression Using Engineered Riboswitches Sensor-Selector Strategy for Directed Evolution of Biosynthetic Pathways Rapid Evaluation of Itaconic Acid Production Strategies in Saccharomyces Cerevisiae Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are Cautiliand	Peebles Peters Raman Roubos	Christie A.M. Gert Srivatsan Hans
72 73 74 75 76	Production Steering Prokaryotic Gene Expression Using Engineered Riboswitches Sensor-Selector Strategy for Directed Evolution of Biosynthetic Pathways Rapid Evaluation of Itaconic Acid Production Strategies in Saccharomyces Cerevisiae Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are Coutilized	Peebles Peters Raman Roubos Sabido	Christie A.M. Gert Srivatsan Hans Andrea
72 73 74 75 76	Production Steering Prokaryotic Gene Expression Using Engineered Riboswitches Sensor-Selector Strategy for Directed Evolution of Biosynthetic Pathways Rapid Evaluation of Itaconic Acid Production Strategies in Saccharomyces Cerevisiae Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are Coutilized Metabolic Transistor Strategy for Controlling Electron Transfer Chain in Explorible coli	Peebles Peters Raman Roubos Sabido	Christie A.M. Gert Srivatsan Hans Andrea
72 73 74 75 76 77	Production Steering Prokaryotic Gene Expression Using Engineered Riboswitches Sensor-Selector Strategy for Directed Evolution of Biosynthetic Pathways Rapid Evaluation of Itaconic Acid Production Strategies in Saccharomyces Cerevisiae Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are Coutilized Metabolic Transistor Strategy for Controlling Electron Transfer Chain in Escherichia coli	Peebles Peters Raman Roubos Sabido	Christie A.M. Gert Srivatsan Hans Andrea Ka-yiu
72 73 74 75 76 76 77	Production Steering Prokaryotic Gene Expression Using Engineered Riboswitches Sensor-Selector Strategy for Directed Evolution of Biosynthetic Pathways Rapid Evaluation of Itaconic Acid Production Strategies in Saccharomyces Cerevisiae Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are Coutilized Metabolic Transistor Strategy for Controlling Electron Transfer Chain in Escherichia coli Ubiquinone Accumulation Improves Osmotic-Stress Tolerance in Escherichia coli	Peebles Peters Raman Roubos Sabido San	Christie A.M. Gert Srivatsan Hans Andrea Ka-yiu
72 73 74 75 76 76 77 78	Production Steering Prokaryotic Gene Expression Using Engineered Riboswitches Sensor-Selector Strategy for Directed Evolution of Biosynthetic Pathways Rapid Evaluation of Itaconic Acid Production Strategies in Saccharomyces Cerevisiae Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are Coutilized Metabolic Transistor Strategy for Controlling Electron Transfer Chain in Escherichia coli Ubiquinone Accumulation Improves Osmotic-Stress Tolerance in Escherichia coli	Peebles Peters Raman Roubos Sabido San Sevin	Christie A.M. Gert Srivatsan Hans Andrea Ka-yiu Daniel C.
72 73 74 75 76 76 77 78 78	Production Steering Prokaryotic Gene Expression Using Engineered Riboswitches Sensor-Selector Strategy for Directed Evolution of Biosynthetic Pathways Rapid Evaluation of Itaconic Acid Production Strategies in Saccharomyces Cerevisiae Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are Coutilized Metabolic Transistor Strategy for Controlling Electron Transfer Chain in Escherichia coli Ubiquinone Accumulation Improves Osmotic-Stress Tolerance in Escherichia coli Transport and Metabolism of Fumaric Acid in Saccharomyces Cerevisiae	Peebles Peters Raman Roubos Sabido San Sevin	Christie A.M. Gert Srivatsan Hans Andrea Ka-yiu Daniel C.
72 73 74 75 76 76 77 78 79	Production Steering Prokaryotic Gene Expression Using Engineered Riboswitches Sensor-Selector Strategy for Directed Evolution of Biosynthetic Pathways Rapid Evaluation of Itaconic Acid Production Strategies in Saccharomyces Cerevisiae Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are Coutilized Metabolic Transistor Strategy for Controlling Electron Transfer Chain in Escherichia coli Ubiquinone Accumulation Improves Osmotic-Stress Tolerance in Escherichia coli Transport and Metabolism of Fumaric Acid in Saccharomyces Cerevisiae	Peebles Peters Raman Roubos Sabido San Sevin Shah	Christie A.M. Gert Srivatsan Hans Andrea Ka-yiu Daniel C. Mihir
72 73 74 75 76 77 78 79	Production Steering Prokaryotic Gene Expression Using Engineered Riboswitches Sensor-Selector Strategy for Directed Evolution of Biosynthetic Pathways Rapid Evaluation of Itaconic Acid Production Strategies in Saccharomyces Cerevisiae Production of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are Coutilized Metabolic Transistor Strategy for Controlling Electron Transfer Chain in Escherichia coli Ubiquinone Accumulation Improves Osmotic-Stress Tolerance in Escherichia coli Transport and Metabolism of Fumaric Acid in Saccharomyces Cerevisiae Implementing the Formose Pathway for Conversion of Electricity and CO. to Riefuel Procursor Via Formate in	Peebles Peters Raman Roubos Sabido San Sevin Sevin	Christie A.M. Gert Srivatsan Hans Andrea Ka-yiu Daniel C. Mihir
72 73 74 75 76 76 77 78 79	ProductionSteering Prokaryotic Gene Expression Using Engineered RiboswitchesSensor-Selector Strategy for Directed Evolution of Biosynthetic PathwaysRapid Evaluation of Itaconic Acid Production Strategies in Saccharomyces CerevisiaeProduction of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are CoutilizedMetabolic Transistor Strategy for Controlling Electron Transfer Chain in Escherichia coliUbiquinone Accumulation Improves Osmotic-Stress Tolerance in Escherichia coliTransport and Metabolism of Fumaric Acid in Saccharomyces CerevisiaeImplementing the Formose Pathway for Conversion of Electricity and CO2 to Biofuel Precursors Via Formate in	Peebles Peters Raman Roubos Sabido San Sevin Shah	Christie A.M. Gert Srivatsan Hans Andrea Ka-yiu Daniel C. Mihir
72 73 74 75 76 77 78 79 80	ProductionSteering Prokaryotic Gene Expression Using Engineered RiboswitchesSensor-Selector Strategy for Directed Evolution of Biosynthetic PathwaysRapid Evaluation of Itaconic Acid Production Strategies in Saccharomyces CerevisiaeProduction of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are CoutilizedMetabolic Transistor Strategy for Controlling Electron Transfer Chain in Escherichia coliUbiquinone Accumulation Improves Osmotic-Stress Tolerance in Escherichia coliTransport and Metabolism of Fumaric Acid in Saccharomyces CerevisiaeImplementing the Formose Pathway for Conversion of Electricity and CO2 to Biofuel Precursors Via Formate in Escherichia coli	Peebles Peters Raman Roubos Sabido San Sevin Sevin Shah	Christie A.M. Gert Srivatsan Hans Andrea Ka-yiu Daniel C. Mihir Amanda Lee
72 73 74 75 76 77 78 79 80 80	ProductionSteering Prokaryotic Gene Expression Using Engineered RiboswitchesSensor-Selector Strategy for Directed Evolution of Biosynthetic PathwaysRapid Evaluation of Itaconic Acid Production Strategies in Saccharomyces CerevisiaeProduction of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are CoutilizedMetabolic Transistor Strategy for Controlling Electron Transfer Chain in Escherichia coliUbiquinone Accumulation Improves Osmotic-Stress Tolerance in Escherichia coliTransport and Metabolism of Fumaric Acid in Saccharomyces CerevisiaeImplementing the Formose Pathway for Conversion of Electricity and CO2 to Biofuel Precursors Via Formate in Escherichia coliEngineering the Valine Assimilation Pathway to Produce	Peebles Peters Raman Roubos Sabido San Sevin Shah Shah	Christie A.M. Gert Srivatsan Hans Andrea Ka-yiu Daniel C. Mihir Amanda Lee
72 73 74 75 76 77 78 79 80 80 81	ProductionSteering Prokaryotic Gene Expression Using Engineered RiboswitchesSensor-Selector Strategy for Directed Evolution of Biosynthetic PathwaysRapid Evaluation of Itaconic Acid Production Strategies in Saccharomyces CerevisiaeProduction of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are CoutilizedMetabolic Transistor Strategy for Controlling Electron Transfer Chain in Escherichia coliUbiquinone Accumulation Improves Osmotic-Stress Tolerance in Escherichia coliTransport and Metabolism of Fumaric Acid in Saccharomyces CerevisiaeImplementing the Formose Pathway for Conversion of Electricity and CO2 to Biofuel Precursors Via Formate in Escherichia coliEngineering the Valine Assimilation Pathway to Produce Biochemicals and Fuels in S. Cerevisiae	Peebles Peters Raman Roubos Sabido San Sabido San Sevin Shah Shah Shah	Christie A.M. Gert Srivatsan Hans Andrea Ka-yiu Daniel C. Mihir Amanda Lee Kevin
72 73 74 75 76 77 78 79 80 80 81	ProductionSteering Prokaryotic Gene Expression Using Engineered RiboswitchesSensor-Selector Strategy for Directed Evolution of Biosynthetic PathwaysRapid Evaluation of Itaconic Acid Production Strategies in Saccharomyces CerevisiaeProduction of Aromatic Compounds in <i>E. coli</i> Strains Lacking Interconversion of PEP and Pyr When Glucose and Acetate Are CoutilizedMetabolic Transistor Strategy for Controlling Electron Transfer Chain in Escherichia coliUbiquinone Accumulation Improves Osmotic-Stress Tolerance in Escherichia coliTransport and Metabolism of Fumaric Acid in Saccharomyces CerevisiaeImplementing the Formose Pathway for Conversion of Electricity and CO2 to Biofuel Precursors Via Formate in Escherichia coliEngineering the Valine Assimilation Pathway to Produce Biochemicals and Fuels in S. CerevisiaeSystems Metabolic Engineering of Escherichia coli for the	Peebles Peters Raman Roubos Sabido San Sabido San Sevin Sah San Sevin Solomon	Christie A.M. Gert Srivatsan Hans Andrea Ka-yiu Daniel C. Mihir Amanda Lee Kevin

Engineering the Glycolytic Pathway of E. coli K12 Mutants By		
Gene Deletions and Introduction of a Fructose 6-Phosphate		
83 Aldolase	Sprenger	Georg A.
The Potential of Lactic Acid Bacteria As Microbial Factory for		
84 Pentanol Isomer Production	Starlit	Karen I.
Engineering Saccharomyces Cerevisiae for the Production of		
85 Hexadecanol and Octadecanol	Stuart	David
86 L-Methionine Production with Recombinant E. Coli	Takors	Ralf
Engineering of Artificial Enzyme Complexes Mediated By		
Heterospecific Coiled-Coil Zippers or Synthetic Protein-Protein		
87 Interaction Domains in Saccharomyces Cerevisiae	Thomik	Thomas
Driven By Demand Metabolic Engineering - Recombinant		
88 Rhamnolipid Synthesis in Pseudomonas Putida As an Example	Tiso	Till
SMET: Systematic Multiple Enzyme Targeting for Rational		
89 Design of Optimal Strains	Trinh	Cong T.
Mathematical Modelling of Apoptosis for GS-NS0 Cell Culture		
Secreting Monoclonal Antibody: Linking Gene to Growth,		
90 Metabolism and Metabolic Stress	Usaku	Chonlatep
Strong Reduction of Acetate Overflow in <i>Escherichia coli</i> By		
91 Systems Metabolic Engineering	Valgepea	Kaspar
Cytosolic Acetyl-CoA Synthesis By Pyruvate-Formate Lyase in		
92 Yeast	van Rossum	Harmen M.
Itaconic Acid Production in <i>Escherichia coli</i> By Overexpression		
of Citrate Synthase, Aconitase, and Cis -Aconitate		
93 Decarboxylase	Vuoristo	Kiira
Metabolic Engineering of Klebsiella Pneumoniae for 1-Butanol		
94 Production By Using Crude Glycerol	Wang	Miaomiao
Single-Cell Bioreactors Boost Bioprocess Development: New		
95 Insights into Cellular Metabolism	Wiechert	Wolfgang
Corynebacterium Glutamicum Engineered As a Designer Bug for		
96 the Production of Pyruvate and Succinate	Wieschalka	Stefan
Systems Metabolic Engineering of Corynebacterium		
<i>Glutamicum</i> to Overcome the Cellular Toxicity Derived from		
97 Cellulosic Hydrolysate	Woo	Han Min
Development of Genetic Tools for the Metabolic Engineering of		
98 the Thermophilic Acetogen Moorella Thermoacetica	Woolston	Benjamin
Construction of Fast Xylose-Fermenting Yeast Based on		
Industrial Ethanol-Producing Diploid Saccharomyces Cerevisiae		
99 By Rational Design and Adaptive Evolution	Yang	Junjie
Bacterial Cell Factory for Production of Scyllo-Inositol, a		
100 Potential Therapeutic Agent for Alzheimer's Disease	Yoshida	Ken-ichi
Construction of a Hybrid Pathway for Selectively Removing		
101 Nitrogen Atom from Carbazole	Yu	Во
Protein Design for a De Novo Synthetic Pathway of Microbial	_	
102 Production of 1,3-Propanediol from Sugar	Zeng	An-ping

Systematic Characterization of Protein–Protein Interface for the	5	
Development of Artificial Biomachinery for Metabolic		
103 Engineering	Zeng	An-Ping
Dynamic Control of Metabolism through Engineering Ligand-		
Induced Allosteric Regulation Based on a New Concept of		
104 Thermodynamic Cycle of Protein Dynamics	Zeng	An-Ping
105 Development of the First Scalable Rubbery Polyester	Zhang	Kechun
Co-Culture Based Modular Engineering for Aromatic and		
106 Aromatic-Derived Compounds Production in E. coli	Zhang	Haoran
A Fast Metabolic Sensor for <i>in vivo</i> Cytosolic Phosphate		
107 Concentration in Saccharomyces cerevisiae	Zhang	Jinrui
Cooperative Co-Culture of Escherichia coli and Saccharomyces		
108 Cerevisiae for Overproduction of Paclitaxel Precursors	Zhou	Kang
Systematic Engineering of Lipid Metabolism for Fatty-Acid-		
109 Based Biofuel Production	Zhou	Yongjin

Poster Group 2 (Tuesday, June 17 and Wednesday, June 18)

Poster	Abstract Title	Last Name	First Name
Number			
110		Alonso-	1
110	Engineering a Balanced Mevalonate Pathway in E.coli	Gutierrez	Jorge
	Yeast Mitochondrial Engineering: Targeting the Powerhouse of	A	1
111	the Cell for Advanced Biofuel Production	Avalos	Jose L.
	Combining Elementary Mode Analysis with a Network		
	Embedded Thermodynamic Approach for Analysis of Microbial		
112	Adipic Acid Production	Averesch	Nils J. H.
	Metabolic Reconstruction of Clostridium Acetobutylicum for	_	
113	Enhanced Production of Butyric Acid	Bang	Junho
	Development of Next Generation Yeast Strains for Ethanol		
114	Production from Lignocellulosic Feedstocks	Boer	Viktor
	Identifying the Source of Strain-to-Strain Variability in		
	Isoprenoid Production Capacity of <i>E. coli</i> Using a Systems		N 4 11
115	Biology Approach	Bongers	Mareike
	Rational Metabolic Engineering of Baker's Yeast for Production		
116	of 3-Hydroxypropionic Acid	Borodina	Irina
	Understanding and Overcoming Monoterpene Toxicity in Yeast	_	
117	for the Production of Renewable Jet Fuels	Brennan	Timothy
	Molecular Approaches to Improve 1-Butanol Tolerance and		
118	Production in Escherichia coli	Bui	Le Minh
	Metabolic Engineering for Production of 5-Aminovalerate and		
119	Glutarate Using Escherichia coli	Chae	Tong Un
100	Synthetic Regulatory Small RNAs for Genome-Wide Metabolic		
120	Engineering	Chae	Tong Un
	Analysis of Aerobic-to-Anaerobic and Anaerobic-to-Aerobic		
121	Switches in E. coli Using Large-Scale Dynamic Metabolic Models	Chakrabarti	Anirikh
	Direct Fermentation for Isobutene, Butadiene and Propylene		
	Production : A Highway to Renewable Plastics, Synthetic Rubber		. .
122	and Fuels	Chayot	Romain
100	Biosynthesis of Lactate-Containing Polymers in Metabolically		a 14
123	Engineered Escherichia coli	Choi	So Young
	Production of Native-Sized Spider Dragline Silk Protein through		
124	Metabolic Engineering Approach in Escherichia coli	Chung	Hannah
	Splitting the E. coli Metabolism for the Production of Fructose-6-		
125	P Derived Chemicals	Coussement	Pieter
	Engineering S. Cerevisiae Metabolism for Efficient Production of	Death	
126	Acetyl-CoA Derived Products	Denby	Charles
	Engineering Yeast to Produce Fatty Acid-Derived Fuels and		
127		d'Espaux	Leopold
	Construction of Fast Xylose-Fermenting Yeast Based on		
	Industrial Ethanol-Producing Diploid Saccharomyces Cerevisiae		
128	By Rational Design and Adaptive Evolution	Diao	Liuyang

Engineering a Functional Deoxyxylulose Phosphate (DXP)		
129 Pathway in Saccharomyces Cerevisiae	Dietzel	Kevin
Expression Optimization of Multi-Enzyme Pathways for Xylose		
130 Utilization and Chemical Production	Dueber	John E.
The Importance of the Lipid Biosynthetic Pathway for		
131 Glycolipids Production in Engineered E. coli Cells	Faijes	Magda
Determining the Control Circuitry of Redox Metabolism at the		
132 Genome-Scale	Federowicz	Stephen
Implications of the Assumptions on Intracellular Metabolic		
133 Operational States in Metabolic Control Analysis	Fengos	Geogios
134 Novel Biosensors for Optimizing Yeast Cell Factories	Florian	David
13C Metabolic Flux Analysis of Co-Culture Systems: A Novel		
135 Approach	Gebreselassie	Nikodimos A.
Targeted Omics Informed Engineering to Improve C5 Alcohol		
136 Production in E. coli	George	Kevin W.
A Novel Design of a Translation Coupling-RNA Scaffold System		
to Improve the Efficiency of Molecular Chaperone on		
137 Recombinant Proteins Solubilization	Geraldi	Almando
2-Butanol and Butanone Production in Saccharomyces		
Cerevisiae through the B12 Dependent Dehydratase Pathway		
138 Using a Tev-Based Expression System	Ghiaci	Payam
	Gopalakrishna	
139 Using Metrxn for Flux Elucidation and Model Reconstruction	n	Saratram
Use of Transporter Plug-Ins for Enhanced Productivity and		
Reduced Byproduct Formation of Bioalkanes and Related		
140 Compounds	Grant	Chris
Engineering Efficient Xylose Metabolism Using Synthetic		
141 Biology	Hennessy	Rosanna
Using Protein Scaffolds to Redirect Photosynthetic Reducing	Henriques de	
142 Power for Biosynthesis of Natural Products	Jesus	Maria
Assessing Metabolic Response to Increased Substrate Loading		
143 Rate in Mixed-Culture Fermentation of Waste Water	Hoelzle	Robert D
Genetic Engineering to Produce Higher Alcohols in Yeast		
144 Saccharomyces cerevisiae	Ishii	Jun
Directed Evolution of Terpene Synthases Using High-		
Throughput Colorimetric Screening Based on Substrate		
145 Consumption	Iwasaki	Miki
Enhanced Biotuel Production through Coupled Consumption of		
146 Acetic Acid and Cellulosic Sugars By Engineered Yeast	JIN	Yong-Su
Lysate of Engineered Escherichia coli Supports Conversion of		
Glucose to 2,3-Butanediol with Near-Theoretical Yields and		
147 Ultrahigh Productivity	Кау	Jenniter E.
Evolution Reveals a Glutathione-Dependent Mechanism of 3-		
148 Hydroxypropionic Acid Detoxification	Kildegaard	Kanchana R.

Optimality of Microbial Metabolism with Biosynthetic		
149 Heterologous Reactions	Kim	Dong In
Deciphering Thermodynamics in Metabolic Networks: A Priority		
150 List of Candidates for Metabolomics	Kiparissides	Alexandros
151 Malic Acid Production By Aspergillus Oryzae	Knuf	Christoph
Feasibility Studies of New Strategy for Ultra-High-Throughput		
Screening (uHTS) of Novel Enzyme By in Vitro		
Compartmentalization (IVC) Using Microbeads from		
152 Metagenomic Resources	Ко	Kyong-Cheol
Replacement of the Saccharomyces Cerevisiae Acetyl-CoA		Ryong encor
Synthetases By Acetylating Acetaldebyde Debydrogenase for		
152 Outosolic Acetul-CoA Synthesic	Kozak	Barbara II
	KUZAK	
Decorating Pactorial Surfaces Dy Decigner Malesules Advances		
Decorating Bacterial Surfaces by Designer Molecules Advances	V	Tulia
154 the Fundamental Knowledge about Bacterial Growth	Kuru	Erkin
Metabolic Modulation in Response to Chemical-Induced Signal		
155 Transduction in Chlamydomonas Reinhardtii	Lee	Jung-eun
Metabolically Engineered Escherichia coli for Isoprene		
156 Biosynthesis	Liu	Chun-Li
Application of a Genetically-Encoded Metabolite Sensor for		
157 Single Cell Analysis and Development of Production Strains	Mahr	Regina
On the Effects of Phenotype Prediction Methods over Strain		
158 Design Algorithms. a Multi-Objective Approach	Maia	Paulo
Exploring Bacterial Microcompartments to Establish Orthogonal		
159 Metabolism	Mampel	Joerg
Redemption: Reduced Dimensional Ensemble Modeling and		
160 Parameter Estimation	Manesso	Erica
Metabolic Engineering of Yeast Central Metabolism for Higher		
161 Alcohol Production	Matsuda	Fumio
The Impact of Orthogonal Gene Expression on Heterologous		
162 Pathway Productivity	McArthur	George H.
Tools to Resolve Compartmentalized Metabolism in		
163 Mammalian Cells	Metallo	Christian M.
Identification of the Missing Enzymes for the Heterologous		
164 Production of n-Butanol at High Yield	Mevnial-Salles	Isabelle
Engineering of Artificial Enzyme Complexes Mediated By		
Heterospecific Coiled-Coil Zinners or Synthetic Protein-Protein		
165 Interaction Domains in Saccharomyces Cerevisiae	Mignat	Cora
Engineering Improved Productivity of 1.4-Rutanedial in E. coli –	imbriat	
166 a Kinetic Modeling Approach	Miskovic	Liubisa
Designing a Nitrogon Eivotion Circuit in an Oursenie	IVIISKUVIL	циліза
Designing a Nitrogen Fixation Circuit in an Oxygenic	Mueller	Thomas
167 Photosynthetic Organism	iviueller	inomas
Effect of CO Transfer on Hydrogen Production By		
168 Carboxydotrophic Archeon Thermococcus Onnurineus NA1	Na	Jeong Geol

Streamlining Central Catabolism for à La Carte Activation of		
169 Glycolysis	Nikel	Pablo I.
170 Towards a Chassis Organism for Synthetic Biology	Noack	Stephan
Computing Proteome Abundance and Activity with a Genome-		
171 Scale Model of Metabolism and Gene Expression	OBrien	Edward J.
Deciphering Dynamic Regulation Patterns of Cellulose-		
172 Degrading Enzymes in Anaerobic Fungi	O'Malley	Michelle A.
Aspergillus Terreus Isolated from the Brazillian Diversity:		
173 Genomic Variability Associated to Lovastatin Production	Parachin, N.S.	Nádia
Regulation of Ancillary Reactions Around the Central Carbon		
174 Metabolism of E. coli	Parisutham	Vinuselvi
Examining the Complex Transcriptional Response of Perturbing		
Anthranilate Synthase in the Terpenoid Indole Alkaloid Pathway		
175 in Catharanthus Roseus	Peebles	Christie A.M.
Discovery of Gene Overexpression Targets for Biofuel Product		
176 Tolerance in Yeast	Peña	Pedro V.
177 Microbial Production of Renewable Monoethylene Glycol	Pereira	Brian
Improving the Internal Flux Distributions from Genome Scale		
178 Metabolic Models of S. Cerevisiae	Pereira	Rui
The Yeast Pathway Kit: A Method for Rational or Combinatorial		
179 Metabolic Pathways Design in Saccharomyces Cerevisiae	Pereira	Filipa
Efficient Searching and Annotation of Metabolic Networks		
180 Using Chemical Similarity	Pertusi	Dante
Development of a Highly Efficient Gene Delivery System for		
181 Syngas Fermenting Clostridia	Philipps	Gabriele
Retooling Glycolysis in Saccharomyces Cerevisiae for More		
182 Efficient Isoprenoid Production	Pickens	Lauren
Systematic Characterization of Intracellular Metabolic States		
183 through Flux Directionality Profile Analysis	Pinto Vieira	Joana
184 Trans-Regulatory Elements As Tools for Metabolic Engineering	Politz	Mark
Multiplex Amino Acid Metabolism Engineering for Increased		
185 Production of L-Ornithine in Yeast	Qin	Jiufu G.
Improved <i>N</i> -alkanes Production in <i>Escherichia coli</i> By Spatial		
186 Organization of Alkane Biosynthetic Pathway Enzymes	Rahman	Ziaur
Tools for Advancing Genome Engineering on the Protein,		
187 Pathway, and Genome Scale	Reynolds	T. Steele
Ultra-High-Throughput Screening of Enzyme Libraries with		
188 Droplet-Based Microfluidics	Romero	Philip
189 Kinetic Reconstruction and Analysis of Sphingolipid Metabolism	Savoglidis	Georgios
De Novo Production of Monoterpenoic Acids with		
190 Pseudomonas Putida	Schrader	Jens

A Computationally-Driven Metabolic Engineerin	ng Strategy to	
191 Increase Cellulose Production in Plants	Senger	Rvan S.
Metabolic Engineering of an Endogenous Pathw	vav for n-Butanol	,
192 Production in Saccharomyces Cerevisiae	Shi	Shuobo
Development of an in silico Tool of Novel Metal	polic Pathway	
193 Designs for Microbial Productions	, Shirai	Tomokazu
Production of Fatty Acid Derived Biofuels in Sac	charomyces	
194 Cerevisiae	Siewers	Verena
Rapid One-Step Inactivation of Single or Multipl	e Genes in	
195 Escherichia coli	Song	Chanwoo
Pigment-Based, Low-Cost, Portable Micronutrie	nt Status Tests	
196 Using Engineered Bacteria	Styczynski	Mark P.
The Role of Trehalose Metabolism in Saccharon	nyces cerevisiae Suarez-	
197 from a Quantitative Approach	Mendez	Camilo A.
Characterization of Anaerobic Central Metaboli	sm to Improve	
198 Succinate Production in Enterobacter Aerogene	s Tajima	Yoshinori
Expanding Biosynthetic Pathways Based on The	rmodynamic	
199 Preferences	Tashiro	Yohei
Fatty-Acid Production in Yeast through Reversal	of the Beta-	
200 Oxidation Cycle	Teixeira	Paulo G.
Increased 3-Hydroxypropionic Acid Production	from Glycerol	
Based on the Genome-Scale Metabolic Simulati	on in	
201 Escherichia coli	Tokuyama	Kento
Engineering S. Cerevisiae for Production of Eupl	norbiaceae	
202 Diterpenes	Tong	Gary J.
	1	
Improving Dipicolinic Acid Production By Bacillu	is subtilis	
203 during Stationary Phase Based on ¹³ c-Metabolic	: Flux Analysis Toya	Yoshihiro
Construction of E. coli Reporter Strains for the S	tudy of Stress-	
204 Answer Regulator Proteins	Trachtmann	Natalia
Rational Design of Modular Cells for Efficient Co	ombinatorial	_
205 Biosynthesis of Designer Bioesters	Trinh	Cong T.
Design and Construction of an Artificial Nonmer	valonate Operon	
206 of Escherichia coli	Isuge	Kenji
Lactic Acid Production from Xylose By Engineere	ed The second	The state of
207 Saccharomyces Cerevisiae	Turner	Timotny L.
200 Medel Driven Mechanistic Analysis of Adaptive		lass
Carbon Diovido Eivation By Calvin Cycle Engran		1026
200 Ethanol Viold in Voast	van Maria	Antonius I A
209 Etildilli Tielu III Tedst Rational Engineering of the Mothylenythrited Dh		AIILUIIIUS J.A.
210 Pathway through Matabalic Control Analysis	Volko	Daniel
Comprehensive Evaluation of Two Genome Sea		Daniel
211 Network Models of Schaffersomuces Stinitis	Wang	lin

Genome Scale Metabolic Modeling Reveals New Insights into		
Biomass Production in the Marine Sponge Amphimedon		
212 Queenslandica	Watson	Jabin
Quorum-Sensing Linked RNAi for Dynamic Pathway Control in		
213 Saccharomyces Cerevisiae	Williams	Thomas C.
Balancing Flux through Secondary Metabolic Pathways in Plant		
214 Culture Systems	Wilson	Sarah
Optimization of Multi-Gene Biological Systems Using High-		
Throughput DNA Assembly, Sequencing, and Model-Guided		
215 Search Strategies	Woodruff	Lauren B. A.
Evaluation of Biosynthetic Pathways for Conversion of Natural		
216 Gas to Liquid Fuels	Woolston	Benjamin
High-Efficiency Scarless Genetic Modification Method in		
217 Escherichia coli without Counterselection	Yang	Junjie
Metabolic Engineering of a Biosensor-Based Screening Platform		
218 in Yeast	Zhang	Jie
Metabolic Engineering for Production of Valuable Chemicals		
219 Based on Escherichia coli Strains Designed in silico	Zhang	Xiaolin