Prospect Park, Brooklyn

Duckweed (Lemnaceae): Biological design for alkane and biodiesel production

Rob Martienssen, Evan Ernst, Almudena Molla-Morales, Alex Canto Pastor, Will Dahl, Seung Cho

Duckweed (Lemnaceae): A clonal aquatic flowering plant

Existing energy crops

Corn/sugarcane/swichgrass

- Compete with food crops
- High energy input
- High lignin content
- Production of bioethanol

🗋 Algae

- High biomass output
- Difficult to harvest
- Contamination problems
- Can produce oil

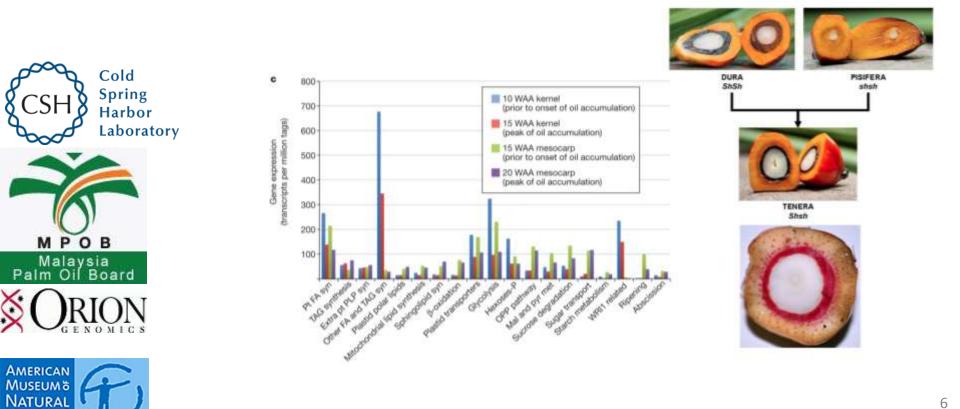
Replacing fossil fuels

Biofuel feedstock	Fossil energy balance
Cellulosic ethanol (<i>Miscanthus</i> grass)	2 -36
Palm oil	9
Ethanol (sugarcane)	8
Rapeseed (canola) oil	2-3
Corn ethanol	1.5

The best energy crops are clones......

Oil palm is the most productive oil crop...

But competes with rainfo and food production


The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK

Rajinder Singh¹, Eng-Ti Leslie Low¹, Leslie Cheng-Li Ooi¹, Meilina Ong-Abdullah¹, Ngoot-Chin Ting¹, Jayanthi Nagappan¹, Rajanaidu Nookiah¹, Mohd Din Amiruddin¹, Rozana Rosli¹, Mohamad Arif Abdul Manaf¹, Kuang-Lim Chan¹, Mohd Amin Halim¹, Norazah Azizi¹, Nathan Lakey², Steven W. Smith², Muhammad A. Budiman², Michael Hogan², Blaire Bacher², Andrew Van Brunt², Chunyan Wang², Jared M. Ordway², Ravigadevi Sambanthamurthi¹ & Robert A. Martienssen³

¹Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia. ²Orion Genomics, 4041 Forest Park Avenue, St Louis, Missouri 63108, USA. ³Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York 10024, USA. ⁴Arizona Genomics Institute, University of Arizona, Tucson, Arizona 85705, USA. ⁵The Genome Institute at Washington University, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA. 6 Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.

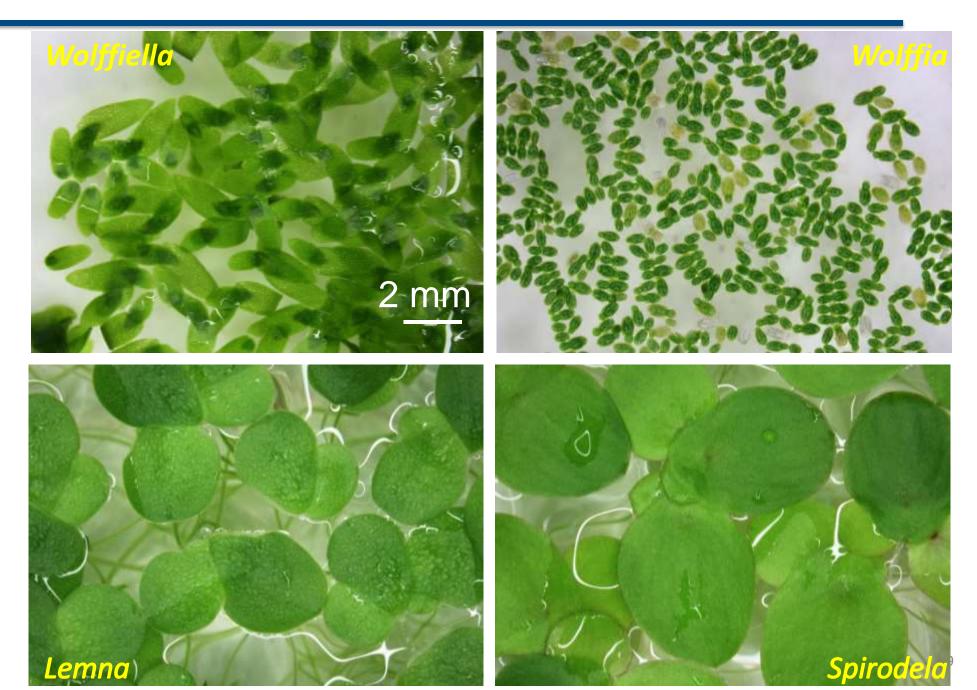
*These authors contributed equally to this work.

HISTORY

Lemnaceae (duckweed) are the world's smallest, but fastest growing aquatic flowering plants

Used for basic research, environmental monitoring and waste water remediation

Very high rates of biomass accumulation make them an attractive target for engineering biofuel feedstocks



- Does not compete with food production
- Can be grown on wastewater
- Rapid growth
- Low lignin content
- Long production period
- Spread all over the world
- Cheap and easy to grow

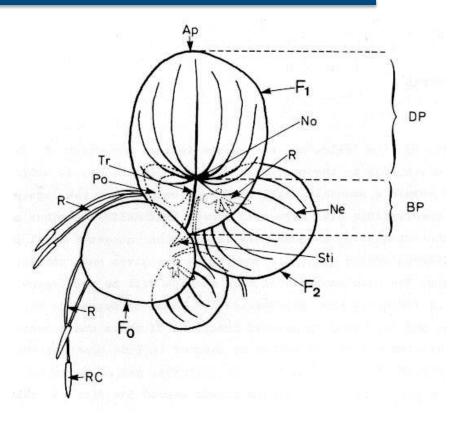
Lemnaceae (family Araceae, monocots)

style

pollen

Lemna gibba flower

Lemnaceae



Liopsida class Aridae subclass Arales order Araceae family

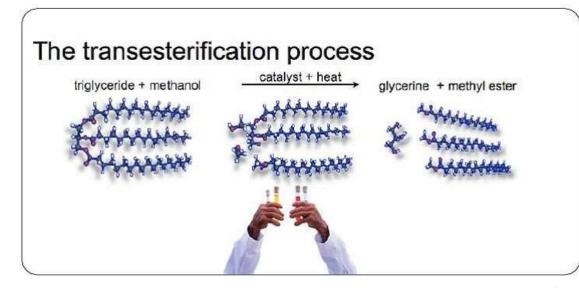
Wolfia microscopica

- Reduced morphology
 Fronds (leaf-like structures)
 Meristem-like stem cell
 "pocket"
- Clonal reproduction
 48 hours duplication by budding
 - •I imited flowering

Spirodela polyrhiza (Landolt, 1986)

Wide natural variation:

- Growing rate
- Starch 12-48%
- Protein 11-40%
- Lipid 2-9%
- Low lignin content (5%)


Needs genetic modification for lipid production

Lemnaceae

Chemical properties of biodiesel

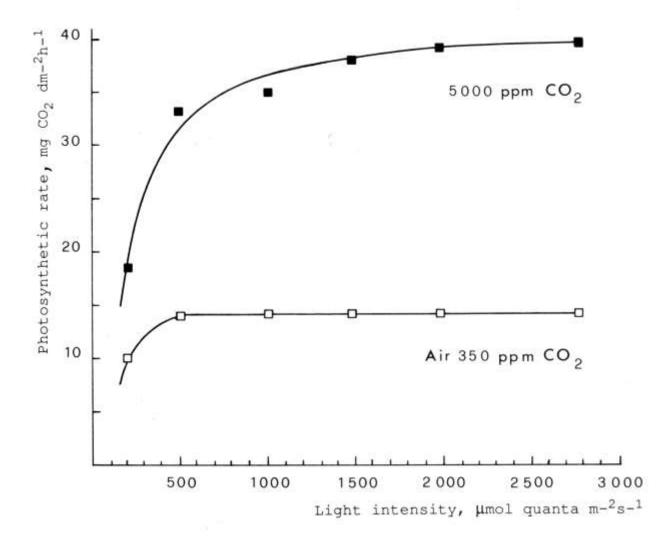
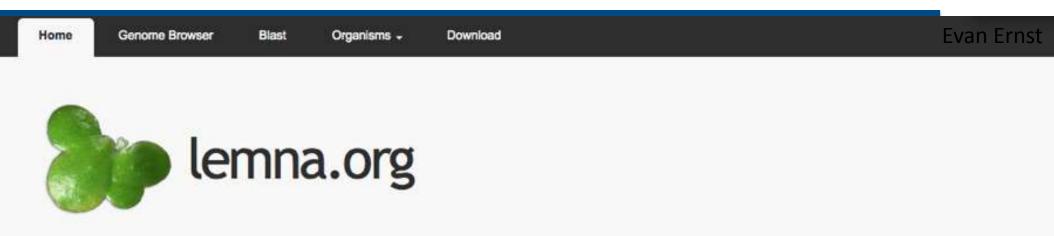


Table 1. Fuel Properties as a Function of Fuel Composition in Diesel Engines

	Fatty acids					
Chemical property	Saturated 12:0, 14:0, 16:0, 18:0, 20:0, 22:0	Monounsaturated 16:1, 18:1, 20:1, 22:1	Polyunsaturated 18:2, 18:3 Low			
Cetane number	High	Medium				
Cloud point	High	Medium	Low			
Stability	High	Medium	Low			
NO, emissions	Reduction	Slight increase	Large increase			

Photosynthetic rate responds well to increased Carbon

Andersen, 1985

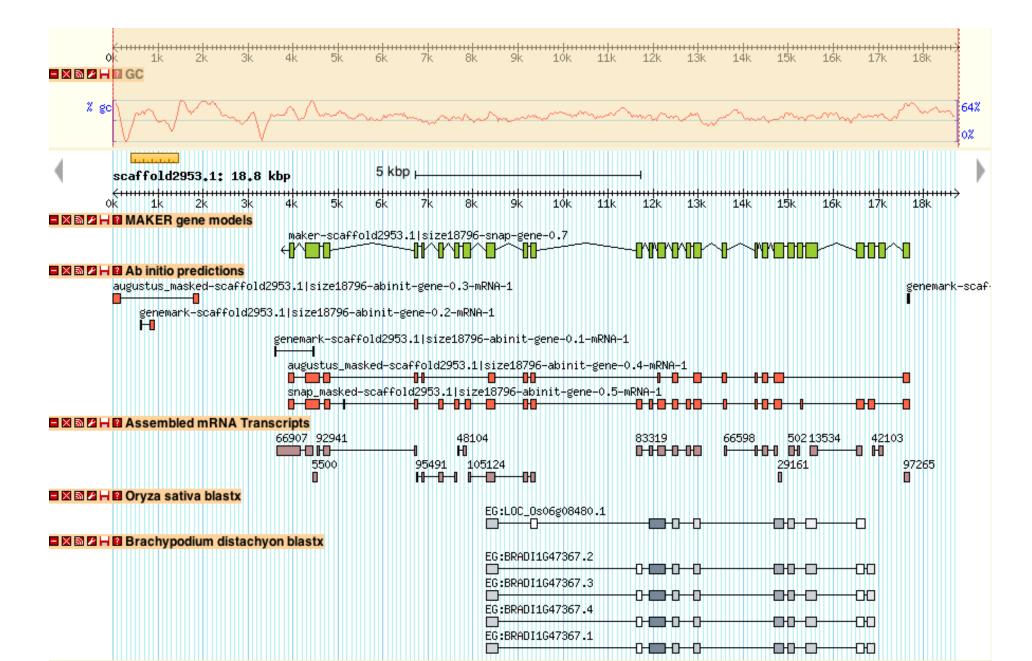


Develop duckweeds as biofuel feedstock

- Create/improve molecular tools to study duckweed
- Study duckweed development and metabolism
- Generation of transgenic lines for biofuel production
 - Increase expression of genes related to the production of TAG
 - Silence the genes that have a role in the oxidation of lipid bodies
 - Redirect the starch metabolism silencing the key genes that lead to its accumulation

Lemna gibba genome sequence http//www.lemna.org

Home

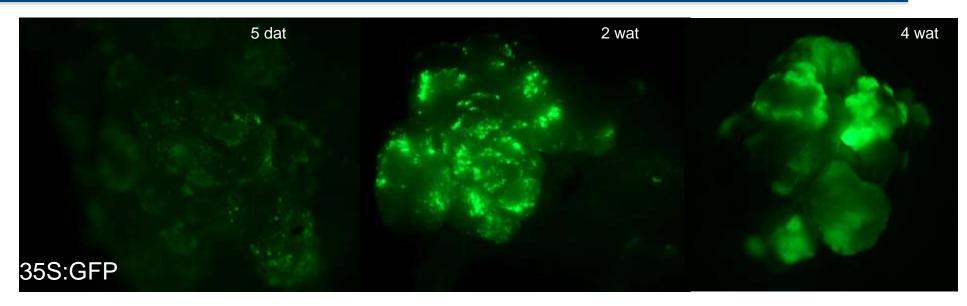

Lemna.org is a repository of Lemnaceae genomic information for researchers. Currently we host the draft genome sequence of a single species, Lemna glbba, and hope to work with the community to add more genomes as the data are made available.

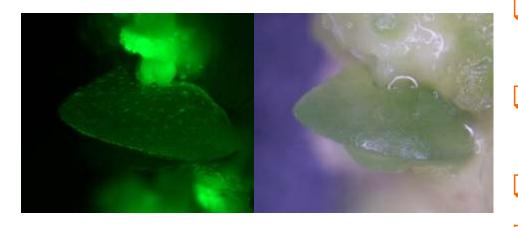
This site runs atop an open source software stack including Drupal for content management, Tripal to integrate Drupal with our Chado/PostgreSQL database, and a number of analysis tools such as NCBI Blast+ and GBrowse.

Lemna gibba G3 DWC131 Assembly (450 Mbp)

	# >200nt	# >100Knt	N50 (bp)	NG50 (bp)	Longest (bp)	Size (Mbp)
Contigs	471,436	-	1,876	1,476	33,244	401
Scaffolds	140,499	54	16,085	18,907	270,981	507

PICKLE: a regulatory gene for Oil biosynthesis


Aim:


Develop a stable transformation protocol suitable for high throughput application

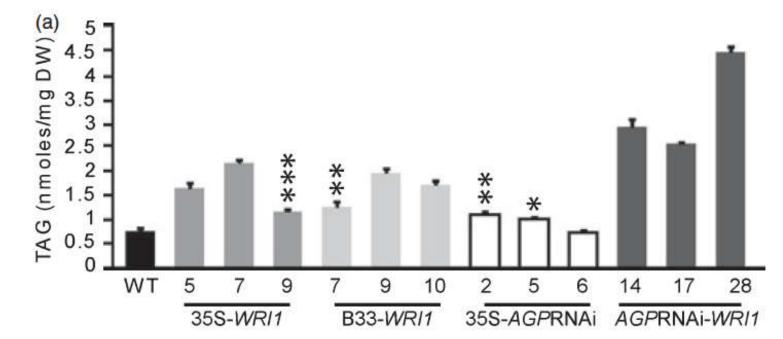
- Study of promoters for overexpression of genes of interest
- Design artificial microRNA using endogenous miRNA precursors to silence undesired pathways

Transformation: regeneration

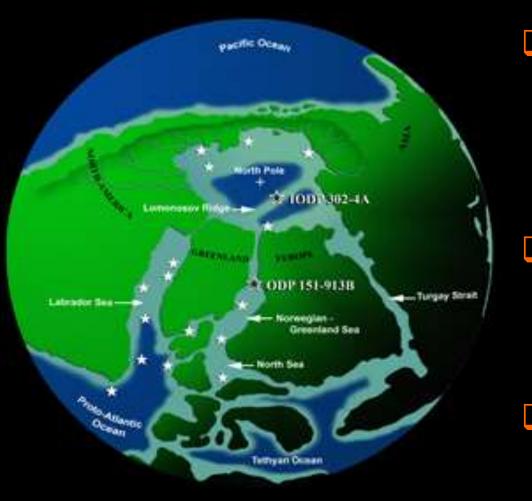
- Green Fluorescent Protein (GFP) gene from Jellyfish
- Efficiency of stable transformants 90%
- 6 week regeneration
- Comparable with Arabidopsis

Diverting carbon from starch to oil

Plant Biotechnology Journal


Plant Biotechnology Journal (2011) 9, pp. 874–883

doi: 10.1111/j.1467-7652.2011.00599.x


Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis

Sanjaya^{1,2}, Timothy P. Durrett^{2,3}, Sean E. Weise^{1,2} and Christoph Benning^{1,2,*}

¹Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
²Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
³Department of Plant Biology, Michigan State University, East Lansing, MI, USA

Climate change: we've been here before...

Moran et al (2006) Nature 441:601-605.

 In the early Eocene (~49 million years ago), atmospheric CO₂ concentrations were 5 times current levels.

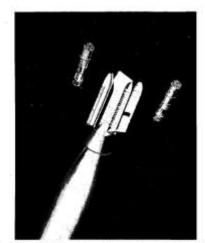
 Arctic sea surface temperatures averaged 13° C in contrast to today's -9° C.

Isolation of the Arctic Ocean from deep water currents led to a surface layer of fresh water.

"Azolla event" & global climate change

- Arctic sediment core samples revealed alternating layers of freshwater *Azolla* fossils measuring 8-20 meters thick.
- Azolla blooms alone may have drawn 80% of the CO₂ out of the atmosphere contributing to the climate change that converted the ancient Greenhouse to the current lcehouse.

Moran *et al* (2006) *Nature* 441:601-605, Sluijs, A. et al. Nature 441, 610–613 (2006). Speelman et al (2009) Geobiology 7(2):155-70..


50 years of duckweed in space

Effects of Prolonged Near Weightlessness on Growth and Gas Exchange of Photosynthetic Plants

C. H. WARD, S. S. WILKS, AND H. L. CRAFT

Rice University, Houston, Texas and USAF School of Aerospace Medicine, Brooks Air Force Base, Texas

> An experiment was designed to determine the effects of long-duration (30 days) exposure to near weightlessness on growth and gas exchange of the unicellular green alga Chlorella sorokiniana and the giant duckweed Spirodela polyrhiza. Instrumentation was provided for in-flight monitoring of carbon dioxide, oxygen, temperature, and pressure. Transmittance of light through the cultures was measured with photocells to indicate relative growth. Twelve hour light-dark cycles and data acquisition were controlled by programmer. The experiment was launched into near circular east-west orbit at Vandenberg Air Force Base on 30 March 1966 as part of the Air Force Office of Aerospace Research nonrecoverable OV-1 satellite program. Data were taken every 3 hours, stored on a satellite tape recorder, periodically transmitted to tracking stations, and accumulated at Cape Kennedy for decommutation. Computer reduction of data was performed at Brooks Air Force Base. Following data reduction, programmed control experiments were performed to simulate conditions, especially temperature, experienced in orbit. The alga experiment developed a gas leak during launch and lost pressure rapidly upon exposure to the vacuum of space. Data from the duckweed experiment were obtained for 230 hours prior to failure of the satellite power system. A nonstatistical comparison of flight and ground control data indicates that photosynthetic and respiratory gas exchange of Spirodela polyrhiza was not affected by exposure to near weightlessness for a period of 230 hours. Accuracy of comparison of flight and ground control data was compromised because of inability to quantitatively duplicate the amount of experimental plant material under conditions required for maintenance of axenic culture.

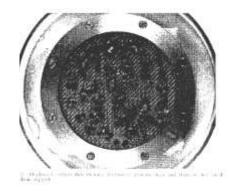
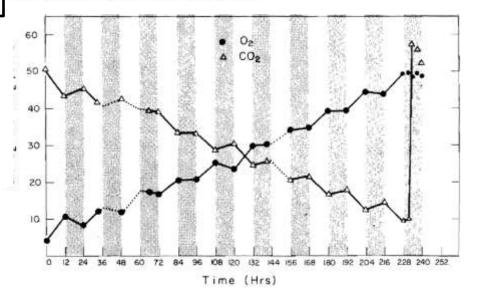




Fig. 14. Actio's concept of separation of OV1 satellites from Aflas Behaving Structure

- Lemnaceae are perfect candidates for biofuel production
- The use of Lemnaceae as an oil source requires genetic modification
- Genetic tools for *Lemnaceae* transformation are ready
- We are testing strategies for overexpression and silencing of genes involved in TAG and starch metabolism, respectively

Acknowledgments

Cold Spring Harbor Laboratory Evan Ernst Almudena Molla-Morales Alex Cantó Pastor Will Dahl Seung Cho Lee **Brookhaven National Laboratory** John Shanklin SUNY Stony Brook **Rutgers Duckweed Stock Cooperative US Department of Energy** Malaysian Palm Oil Board **Orion Genomics L**

