Closing the Carbon Cycle with Air Capture

Mogens B. Mogensen **Department of Energy Conversion and** Storage, Technical University of Denmark Annual Conference between Lenfest Center for Sustainable Energy at Columbia University and Department of Energy **Conversion and Storage, Technical University** Denmark (DTU), NY, April 14th, 2014.

DTU Energy Conversion Department of Energy Conversion and Storage

DTU Energy Conversion = Department of Energy Conversion and Storage, Technical University of Denmark

- Sustainable technologies for energy conversion and storage
- Located on two campuses near
 Copenhagen, Denmark: Lyngby and Risø at <u>Roskilde</u>
- Ca. 240 employees
- Our research span from fundamental investigations to component manufacture
- Focus on industrial collaboration and industrially relevant processes
- Head quarter is at DTU Risø Campus

DTU Energy Conversion, Technical University of Denmark

Introduction

There are clear reasons to look for means of recycling CO₂ using renewable energy:

- Probable anthropogenic climate change by CO₂ emissions
- Limited supply of cheap fossil fuel resources in the long term
- Security of supply and geopolitical consequences of unequal distribution of resources

Synthetic fuels – CO_2 neutral green fuels - seem particularly benign to replace the fossil fuels.

Increasing CO₂ concentration in the atmosphere

Increasing CO₂ concentration in the atmosphere One year of CO₂ daily and weekly means at Mauna Loa

The solution is synthetic green fuels based on hydrogen and carbon

- <u>Green fuel</u> is here defined as CO_2 neutral hydrocarbons: <u>amount of CO_2 emitted</u> by using the fuel \leq <u>amount of</u> <u> CO_2 used</u> making the fuel.
- Biomass or "captured CO₂ + renewable energy for electrolysis" or at least "CO₂ free electricity" e.g. nuclear).
- Chemically they may be expressed as $H_xC_yO_z$ gas, liquid or solid in principle.

Visions

Synfuels from electrolysis of steam and carbon dioxide

- Big off-shore wind turbine parks coupled to a large SOEC produce CH₄ (synthetic natural gas, SNG) - feed into existing natural gas net-work (in Denmark).
- 2. Large SOEC systems produce DME, gasoline and diesel -Island, Canada, Greenland, Argentina, Australia ... geothermal, hydro, solar and wind.
- 3. First target market: replacement of natural gas and <u>liquid</u> <u>fuels for transportation</u>
- 4. All the infrastructure exists!!

Biomass CO₂ recycling

Capture of CO₂ from air + co-electrolysis

Many methods – all need support

- Several chemical systems for air capture
- Biomass of various kinds
- Chemical looping of oxygen for coal combustion (not air capture – for CCS)
- Electrolysis of H₂O followed by reaction of CO₂ with H₂
- Co-electrolysis of CO₂ and H₂O
- Chemical looping of CO₂ into CO
- Artificial photosynthesis of fuel (photo-electrochemical conversion of CO₂ and H₂O) into hydrocarbons

Concluding remarks

- 1. We have cycles that can provide green synthetic hydrocarbon fuels
- 2. We wish to make them more affordable. About 2 6 % of GNP to change to 100 % renewable according to some models.
- 3. We can do it let's do it!
- 4. Today we will hear about how we can do it.

Acknowledgement

We acknowledge support from our sponsors

- Danish Energy Authority Second Second
- Energinet.dk ENERGINET DK
- EU 🔅
- Topsoe Fuel Cell A/S TOPSOE FUEL CELL clean, efficient and reliable
- Danish Programme Committee for Energy and Environment
- Danish Programme Committee for Nano Science and Technology, Biotechnology and IT
- The work of <u>many</u> colleagues over the years

Thank you for your attention!

Why liquid synthetic fuel? The power density argument

- Gasoline (33 MJ/L) filling rate of 20 L/min equivalents <u>11 MW</u> of power and means it takes 2¹/₂ min to get 50 l = 1650 MJ on board
- For comparison: Li-batteries usually requires 8 h to get recharged. For a 300 kg battery package (0.5 MJ/kg) this means a power of ca. 3.5 kW i.e. it takes 8 h to get 150 MJ on board.
- The ratio between their driving ranges is only ca. 5, because the battery-electric-engine has an efficiency of ca. 70 % the gasoline engine has ca. 25 %.

Why synthetic hydrocarbons? The energy density argument

Туре	MJ/I	MJ/kg	Boiling point °C
Gasoline	33	47	40 - 200
Dimethyl ether - DME	22	30	- 25
Liquid hydrogen	(10)	(141)	-253
Water at 100 m elevation	10 -3	10 -3	
Lead acid batteries	0.4	0.15	
Li-ion batteries	1	0.5	

Electrolyser status

Typical ranges polarization ranges for state-of-the-art water electrolysis cells. $E_{th,water}$ and $E_{th,steam}$ are the thermoneutral voltages. E_{rev} is the reversible voltage at standard state.

C. Graves, S. D. Ebbesen, M. Mogensen, K. S. Lackner, Renew. Sustain. Energy Rev., 15 (2011) 1–23

Working principle of a reversible Solid Oxide Cell (SOC). The cell can be operated as a SOFC (A) and as a SOEC (B).