Climate Data Needs for Transportation Agencies

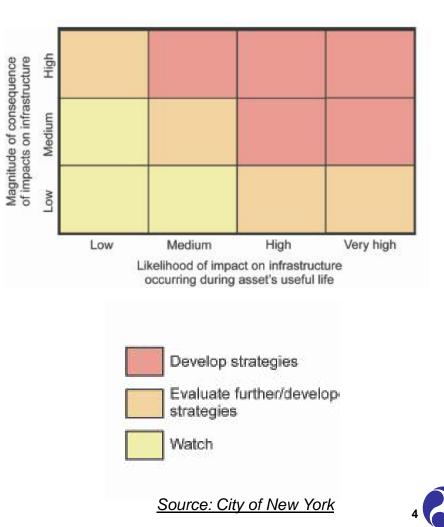
Observational and Analytical Climate Modeling for Engineering Applications November 17, 2011

Rob Hyman FHWA, Office of Natural Environment

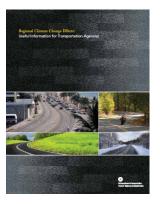
What Climate Changes Will Impact Transportation?

- Sea level rise and storm surge
- Precipitation changes
 - More intense precipitation events
 - Flooding
 - Snowpack changes
- Increase in hurricane intensity
- Increase in very hot days
- Permafrost thawing

Why Does FHWA Care About Climate Change Adaptation?


- Need to protect integrity of transportation investments, safety
 - Infrastructure has long design life (decades)
 - Infrastructure needs to handle new conditions as climate changes
 - Adaptation is ensuring that we plan our infrastructure for the future
- FHWA Goal: Systematic consideration of climate change vulnerability and risk in transportation decision making, at system and project level

FHWA Adaptation Initiatives


- FHWA is developing and sharing information on tools and methodologies that states and MPOs can use to assess risk and prioritize actions:
 - Climate projections
 - Critical asset identification
 - Vulnerability assessment methodologies

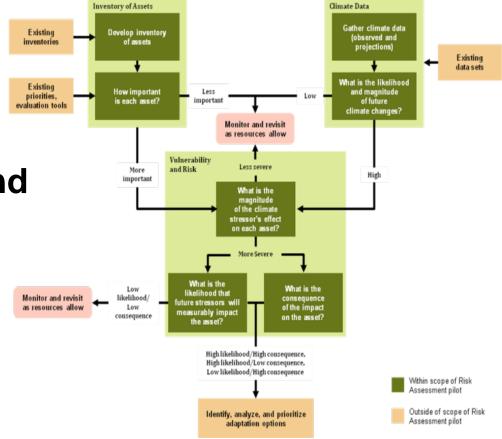
Regional Climate Change Effects (2010)

- Report synthesizes information on climate change projections for transportation decision makers
 - Snapshot: Summarizes recent science
- Projected changes by region
 - Annual, Seasonal Temperature (change in °F)
 - Seasonal Precipitation (% change)
 - Where information exists:
 - Sea level rise, Storm activity
- Also includes information at local, state scales
- Received assistance from climate experts at NOAA, USGS, DOE, etc.

http://www.fhwa.dot.gov/hep/climate/climate_effects/

How Can This Information Be Applied?

- Inform planning efforts with a <u>consistent</u> set of projections
- Inform consideration of vulnerability of key assets
- Not detailed/certain enough for definitive decisions on specific projects



Projected Increases in Annual Temperature



Vulnerability/Risk Assessment Conceptual Model

- Develop inventory of infrastructure assets
- Gather climate data
- Assess vulnerability and risk of assets to projected climate change
- Analyze, prioritize adaptation options
- Monitor and revisit

Climate Change Vulnerability and Risk Assessment Pilot Locations

Gulf Coast Project Examines Issues at Metropolitan Scale

Phase 1

 Overview of climate change impacts on transportation infrastructure in central Gulf Coast (completed 2008)

Phase 2

- Focus on one metropolitan area – Mobile, AL
- Development of adaptation tools and strategies that will be transferable to other areas
- Timeframe: 2010-2013

http://www.fhwa.dot.gov/hep/climate/gulf_coast_study

Gulf Coast 2 Study: Task Objectives

- Task 1: Identify critical assets in Mobile
- Task 2: Climate impacts
 - Develop climate information
 - Assess sensitivity of assets to climate stressors

• Task 3: Determine vulnerability of critical assets

- Broad assessment of vulnerability
- In-depth vulnerability assessment of some of the most critical assets
- Task 4: Develop risk management tool(s)
- Task 5: Coordination with Planning Authorities and the Public
 - Ongoing
- Task 6: Information dissemination and publication

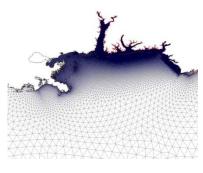
Developing Projected Climate Data

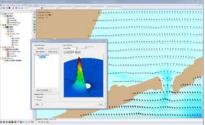
USGS providing statistically downscaled projections for T and P

- 4 to 7 Climate models (PCM, Hadley, ...)
- 3 emission scenarios (A1fi, A2, B1); 3 time horizons out to 2100
- Secondary variables calculated from daily T and P, e.g., 24-hr precip with 5%/yr prob

Sea level rise analysis

- Range of recent global SLR scenarios used
- Accounts for local subsidence


Storm Surge Modeling – ADCIRC


- Range of storm intensities
- Output includes surge distribution and dynamics

Wave Modeling – STWAVE

- Inputs from ADCIRC output and boundary conditions
- Outputs include key aspects of wave energy

Exposure of transportation systems will be assessed using a GIS analysis

Temperature Variables Developed for Gulf Coast Project

1500

Variable	Analysis
Annual, seasonal, and monthly average min, max, and mean temperature	Runway Design
	AREMA Rail
Daily high temperature: mean, 50 %ile, 95 %ile, and warmest day in the	design /
year during each 30-yr period	buildings
Seasonal and annual number of days and maximum consecutive days of	Civil/Geotech/
high temperatures at or above 95, 100, 105, and 110 °F	Pavement
Maan EV 2EV EOV 7EV OEV and largest accurrences for the average	
Mean, 5%, 25%, 50%, 75%, 95%, and largest occurrences for the average	
minimum air temperature over 4 consecutive days in winter, and the	Bridge /Rail
average maximum temperature over 4 consecutive days in summer	biluge / Kali
Mean, 50%, 90%, 95%, and 99% occurrence of the coldest day of the year	Pavement
during each 30-yr period	Design
	Design
Max 7-day average air temperature per year with % probability of	Pavement
occurrence for each 30-yr period (mean, 50%, 90%, 95%, 99% occurrence)	Design (Asphalt)

Precipitation Variables Developed for Gulf Coast Project

1

Variable	Analysis
Annual, Seasonal and monthly precipitation	Pavement Design
Exceedance probability precipitation for 24-hour period with a 0.2%, 1%, 2%, 5%, 10%, 20%, and 50% exceedance precipitation events (e.g., 500-yr, 100-yr, 50-yr,)	Drainage / Liquid Storage
24-hour exceedence probabilities based on today's 0.2%, 1%, 2%, 5%, 10%, 20%, and 50% exceedance precipitation events	Drainage
Exceedance probability precipitation across 4 consecutive days: 0.2%, 1%, 2%, 5%, 10%, 20%, 50%, mean; Exceedance probability of precipitation across 2 consecutive days: 0.2%, 1%, 2%, 5%, 10%, 20%, 50%, mean	Inundation Analysis
Largest 3-day total of precipitation each season	Change in Storm Events

13

Precipitation Data/Projections Needed

- Seasonal and monthly precipitation
- Extremes/events
- Finish updating NOAA Atlas 14 for all regions
- Compile data on *projected* changes in precipitation in the same format as NOAA Atlas 14
- Snow melt, change in snow cover
- Seasonal trends (and projections) in reservoir volumes

Other Precipitation issues

- Projection of extreme events provided at 24-hour level, but hydraulic engineers are interested in events of 6-hour or less duration
- Small scale events don't get enough attention they may be significant in terms of storm water management
- Need to develop ways to relate projected model results (for precipitation) to flow/runoff
 - Also need to integrate with land use changes and other projected changes that will affect runoff to get a true picture

Temperature Projections, Coastal Storm Projections

Temperature

- Seasonal, monthly
- Daily <u>extremes</u> (very hot, very cold), frequency/intensity of heat waves
- Changes to freeze/thaw cycles
- Coastal Storms
 - Projected changes in intensity and frequency
 - Projected storm surge
 - Probability of a given location being hit by hurricane

Sea Level Rise Information Needed

- Range of projected SLR increases
- Projected rates of local change that account for SLR projections and local geologic factors (subsidence, erosion, local variations in sea level)
- LiDAR data for coastal areas
- Baseline DEMs for all coastal areas, with Infrastructure
 - Standardization of DEMs so that they can be meshed
 - DEMs with layers for different scenarios of SLR
 - DEMs for all areas around lakes and rivers (for flooding analyses)

It would be great if the science agencies could facilitate...

- Developing the climate information may be the easy part
- Harder part is making it available, and understanding how to apply it

Provide a Federal agency road map / clearinghouse

- What agencies (and staff) are doing what?
 - "Producers" of climate info (NOAA, NWS, USGS, EPA) and "consumers" (USACE, FEMA, USDOT, etc.) – though the lines are blurred
 - General responsibility, available assistance
 - Research results
 - Relevant regulatory development, guidance, outreach, etc.
 - State and local efforts/results
- Provide centralized location for information / contacts
 - Outreach to track developments, post status updates, contacts, etc.
 - Academic and other research results
 - NOAA and NWS and State climatologists

Identify Available Information

- Identify available datasets, now and in the future
 - Historic/observed
 - Projections
- Strengths/weaknesses/recommendations
- Provide enough information for consumers who are not climate scientists to understand what they are using

Provide Guidance on Conducting Analyses

- Recommended approaches for conducting analyses
 - SLR, RSLR, etc. (with USGS?)
 - Tropical storm modeling (with USACE, others?)
 - Temp and precip modeling (with NWS?)
- Recommendations on use of models
 - Full range vs. selected
- Statistical Downscaling approaches, regional modeling

Provide Guidance on Conducting Risk Assessments

- How can uncertain projections be applied in a planning/engineering context?
- Examples of risk assessments done in other fields, and how to apply same type of analysis to climate change adaptation
- Development of information to support risk assessments. What do we need?
 - Likelihood/certainty information for climate projections
 - Across models?
 - Across scenarios?

Promote Multi-disciplinary Collaboration

- Engineers and scientists do not speak the same language
- Promote communication among
 - Climate modelers (NOAA, universities)
 - Hydrologists, statisticians, weather experts (NWS, state climatologists)
 - Engineers, planners, environment staff
- Differences in data needs and translating data used by the different fields
- Comfort with applying projections versus following trends in historic data

Thank You

http://www.fhwa.dot.gov/hep/climate http://www.fhwa.dot.gov/hep/climate/climate_effects http://www.fhwa.dot.gov/hep/climate/gulf_coast_study

Rob Hyman

Sustainable Transport and Climate Change Team

FHWA Office of Natural Environment

202-366-5843

Robert.Hyman@dot.gov

Lessons Learned: Needed Data Can Be Difficult to Obtain

- Site specific climate projections are difficult to find
 - Downscaling global models is a complex activity
 - Universities are often important players in developing this data – have been partners in many assessments
 - But, downscaled data is becoming more readily available
- Transportation asset inventory data time consuming to assemble
 - Many different sources even within one agency!
 - Many different formats
 - LIDAR data does not capture all needed details

