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Outline

= \Water resources agency decision
making

* Flood risk management and climate
change and decadal variability

= Seasonal climate forecasts: reservoir
management and emergency flood
management

= Making decisions with an uncertain
climate
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Foundations of Water Resources
Policy

Economic and Environmental Principles
and Guidelines for Water and Related Land
Resources Implementation Studies (1983)

“Federal objective of water and related land
resources project planning is to contribute to
national economic development consistent
with protecting the Nation’s environment,
pursuant to national environmental statutes,
applicable executive orders, and other Federal

planning requirements.”
)
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Climate Variability and Water

Resources

= \Water resources agencies deal with climate
variability on multiple time scales

» One of the primary missions is to manage hydrologic
extremes: reducing damages during floods and
providing water supply during droughts

= Operating rules are generally based on historical
record

= Time scale of years to decades
» Floodplain Management

= Time scale of several weeks to several months
(lead times of climate forecasts):

» Reservoir Management
il

» Emergency Management ®
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Temporal Scale of Responses

Reservoir Operations Reservoir
Design
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Flood
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Flood Risk Management and
Climate Change and Decadal
Climate Variability
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Strategies for Floodplain
Management

= Structural floodplain measures (Modify flood).
» reservoirs to store flood waters
» levees to keep floods from a particular area
» channel modifications to increase capacity
» high flow diversions

= Keep people and development out of floodplain
or flood proof structures already in the
floodplain (Reduce susceptibility to flooding).

* Insurance and post-flood assistance (Reduce
financial and social impact of flooding).

* Flood warning and response. @
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Floodplain Management

= National Flood Insurance Program: risk
identification, hazard mitigation, and insurance.

» Special Flood Hazard Area (SFHA) is defined as
area of land inundated by flood having 1% chance
of occurring in any given yeatr.

» Local community must regulate floodplain
development as condition for participation in NFIP.
= State and local governments have major
responsibility for floodplain management.

» Development restrictions

» Zoning laws

®
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Flood Frequency Analysis:
Purposes

Flood frequency analysis needed to support
sound flood plain management.

Regulatory floodplain defined as area with
1% chance of flood in any year (NFIP).

Economic justification of flood reduction
alternatives require calculation of expected
annual damages given alternative plans.

Flood frequency Is basis of engineering
design criteria for levees, dams, etc.

®
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What Is stationarity?

* The assumption behind
traditional hydrologic
frequency analysis Is that
climate Is stationary.

= Stationarity means that
the statistical properties of
hydrologic variables In
future time periods will be
similar to past time
periods
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Statistics and Nonstationarity

= Statistical significance of trends may be
ambiguous.

= |t is difficult to assess whether an observed
trend is truly a long term monotonic trend or
part of an episodic pattern, of which we see
only the upward or downward arm.

= Natural climate variability and long term
persistence can cause episodic patterns in
long term hydroclimatic records.

= Will the trend persist into the future?

®

BUILDING STRONGg,




Climate Model Uncertainty

* Forcing uncertainty - uncertainty with future
greenhouse gas emissions (i.e. human behavior)
and other natural factors.

* Initial condition uncertainty - not having precise
estimates on distributed earth system conditions
at the beginning of climate simulations.

» Climate modeling uncertainties - knowledge
limitations about the climate system physics and
limited ability to approximate those physics at
space and time scales that are computationally

feasible.
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Climate Model Uncertainty
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Current Flood Flow Frequency
Activities

= Revision of Bulletin 17B, Guidelines for Determining
Flood Flow Frequency will likely change current section
on “Climate Trends” and may say that major changes in
climate may be occurring over decades.

* May permit time-varying parameters or other techniques
where changes in climate and flood risk over time can be
guantified.

» |n parallel with revision of Bulletin 17B, USACE, USGS,
FEMA, Reclamation, and FHWA are evaluating possible
approaches to and issues regarding nonstationarity,
climate change, and flood risk.

®
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Climate Change and Flood
Frequency Analysis

= Adoption of alternative statistical models for
flood risk estimates poses policy difficulties
for floodplain management.

= Many stakeholders have financial and other
Interests in using the current method.

» Flood insurance requirements
» Levee certification

®

BUILDING STRONGg,




Seasonal Climate Forecasts:
Reservoir Management and
Emergency Flood
Management
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Multi-Purpose Reservoirs

Flood Control: store runoff during peak flood
season

Hydropower: demand throughout year but
peak in winter heating system or summer
cooling season

Fisheries/ Endangered Species (such as
salmon, steelhead, sturgeon): naturalized
flows (high flows in flood season)

Irrigation: demand for water in growing
season (late spring and summer)

Water Quality, Recreation, Navigation
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Flood control reservation in thousand acre-feet

Reservoir Rule Curves
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Reservoir Management
Institutional Context

= Reservoir management is governed by complex
set of laws, Institutions, and regulations.

» Congressional authorizations, international treaties,
other laws and agreements, environmental
regulations and water rights.

= Changes to operating procedures difficult.
» Changes require long, complex study

» Public involvement in approval process is required
 Interest groups support different competing uses for water

 Changes may cause some interests to be winners while
others are losers

= Use of forecasts in reservoir operations must
be evaluated in this context. :
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Other Impediments to

Forecast Use

Accuracy and reliablility of forecasts need to
be verified over long period.

Benefits of forecasts have not been
adequately assessed over long period.

Additional uncertainties are present that are
not included in forecast probabilities.

Forecasts should have higher geographic
and temporal specificity and skKill.

Variables that are forecast do not match
variables needed for decision-making.

®
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Emergency Operations

= Emergency Operations (Flood Fighting)

= Rehabilitation and Inspection of Levees

» NRC study: Long-term forecasts of regional flooding
may allow “improved prioritization of federal levee
repair investments.”

» Rehabilitation of levees in California before 1998 El
Nino floods
= Technical Assistance to States and
Communities

= Advance Measures

®
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Advance Measures Program

* Protect urban areas from loss of life or
significant damages “due to an iImminent
threat of unusual flooding” prior to flooding
or flood fighting activities

= Measures are usually temporary

= Benefit-to-cost ratio of project must be
greater than one

= Originally implemented for snowmelt
floods

®
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Climate Outlooks and Advance
Measures Criteria

= Imminent Threat: high probability of
catastrophic damages

= Unusual Flooding: 50-year event or higher or
flood of record

= Calculation of expected benefits requires
estimate of the probability of flood damages

= Estimation of flood reduction benefits is
problematic for flood forecasts based on El
Nifio/ La Nifia outlooks

®
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Making Decisions with an
Uncertain Climate

®
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Risk-Informed Decision Making
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Science of Sea Level Rise

Comparison of Peer-reviewed Research
Estimates: Global Sea Level Rise by 2100
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NOAA-National Ocean Service)
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Sea Level: Engineering Implications ®
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Sea Level Change Guidance

= A multiple scenario approach can account for a
range of possible future conditions

= Three estimates of future sea level change must be
calculated for all Civil Works Projects within the
extent of estimated tidal influence

» Extrapolated trend - Use historic rate of sea-level
change as “low” rate.

» Estimate “intermediate” rate using modified NRC

Curve | [0.5 meters by 2100]. Consider most recent
IPCC projections.

» Estimate “high” rate using modified NRC Curve llI.
Modified NRC Curve lll [1.5 meters by 2100].

®
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Sea Level Rise Scenarios
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Formulating Risk Management

Alternatives

* Formulate plans for a wider range of possible
future conditions.

= Potential reversiblility of decisions should be
one consideration.

= Adaptive management strategy — planners

can identify transition points that if crossed
would lead to implementation of alternative

actions.

®
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Choosing Alternative Plans

= Robustness — find alternatives that perform
well under all scenarios

» Compare with cost-benefit analysis and
maximization of National Economic Development

= Evaluation of alternatives
» Residual Risks — what’s the management plan?

» Does the alternative preclude future decisions?
Avoid this if possible. Maintain flexibility.

®
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Managing Residual Risk

= Uncertain information about the likelihood of
future flooding implies uncertain residual risk.

= We should better manage residual risk.
» Require evacuation plans

» Implement zoning and limit development
despite structural measures that remove
community from regulatory floodplain

» Require flood insurance despite no longer
being in a regulatory floodplain

®
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Conclusion

= Uncertainty will remain in projections of future
flood frequency and magnitudes.

= There are inherent uncertainties in climate
science and we need to recognize and plan
around the uncertainty.

= We should shift to a more robust “hedge-and-
adjust” approach to uncertainty rather than the
traditional “predict and optimize” approach.

= We are interested in making better
decisions, not in better predictions.

.- ®
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