

Thermoelectric Power Generation Cooling Options

Once-Through Cooling

Closed-Loop (Evaporative) Cooling

Dry-Cooled Power Plant

Hybrid Cooling

500 MW Coal Thermoelectric Power Plant - Steam Cycle

ERGY and WATER

Water Withdrawal Trends by Sector

[USGS, 2004]

Water Consumption by Sector

U.S. Freshwater Consumption, 100 Bgal/day

Electric Power Generation Water Withdrawal and Consumption

Plant-type	Cooling Process	Water Use Intensity (gal/MWh _e)		
		Steam Condensing ^a		Other Uses ^b
		Withdrawal	Consumption	Consumption
Fossil/ biomass steam turbine ^c	Open-loop	20,000-50,000	~200-300	
	Closed-loop	300-600	300–480	~30-90 ^{d,i}
	Dry	0	0	
Nuclear steam turbine ^c	Open-loop	25,000-60,000	~400	
	Closed-loop	500-1,100	400–720	~30 ^d
	Dry	0	0	
Natural Gas Combined-Cycle ^c	Open-loop	7,500–20,000	100	
	Closed-loop	~230	~180	10e
	Dry	0	0	
Coal Integrated Gasification Combined-Cycle ^c	Closed-loop	200	170	150 ^{c,e}
	Dry	0	0	150 ^{c,e}
Geothermal Steam ^f	Closed-loop	2000	700-1350	NA
Concentrating Solar ^{g,h}	Closed-loop	750	740	10
	Dry	10	0	10
Wind and Solar Photovoltaics ^j	N/A	0	0	1-2
Carbon sequestration for fossil energy generation				
Fossil or biomass ^k	All	~85% increase in water withdrawal and consumption		

Concentrating Solar Power Technology

Steam Turbine Generator
Dispatchable, Integrates with Storage

Stirling Engine-Alternator High Efficiency, no Storage

- **Dishes**
- Receiver/Engine
 Reflector

- Most cost effective
- >250MW
- Operating temp: 400C
- Annual efficiency: 14%
- Most cost effective
- >250 MW
- Operating temp: 560C
- Annual efficiency: 18%

- Modular 30 kW units more flexibility in siting
- Operating temp: 800C
- Annual efficiency: 23%

Energy Growth/Technology Predictions will Impact Regional Water Demand Estimates

- **Estimated most** growth in water stressed regions
- Estimated low natural gas, low nuclear, low renewable use
- Estimated most new plants to use evaporative cooling

"2004 Estimate Example"

Projected Generation Mix Impacts Estimated Water Demands in 2035 – 2007 Example

- Coal
 - 350, 400 MW steam turbine plants (140,000 MW)
- Natural Gas
 - 150, 100 MW natural gas combined cycle (15,000 MW)
- Renewables
 - 125, 200 MW wind or solar farms (25,000 MW)
- Nuclear
 - 5, 1000 MW nuclear reactors
 (5,000 MW)
- Hydroelectric
 - None (~40,000-60,000 MW available)

Dry and Hybrid Cooling Issues and Opportunities

- 90% Less water consumption
- 6 % loss in production
- 20% reduced capacity at hottest hours
- 10% increase in capital cost
- 1-2 ¢ /kWh increase in cost of power

Figure 5 Net Plant Output as a Function of Ambient Temperature; Dry Heat Rejection

Thermoelectric Power Plant Water Quality Requirements

- Power Plant Cooling Tower Systems
 - Do not require very good makeup water
 - Mine water, sea water, waste water
 - Can use recycled waters replacing fresh water
 - Many have converted to municipal wastewater

- 50-60 using municipal or industrial waste water
- Knowledge of cooling system design, construction and operation, recycled water quality, and improved water treatments make it successful and economical
- Requires matching water quality with system
 - Chlorides, ammonia, phoshates, biological, corrosion foulants, scale
- Has often saved water but not always costs
- Drift of particulate is a growing issue

(Puckorius, Veil, EPRI, NETL)