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Automated control and safety systems that help a 
plant return to normal operating conditions when 
abnormal events occur are prevalent in modern 

chemical plants. The databases associated with these 
systems contain a wealth of information about near-miss 
occurrences that, if subjected to frequent statistical analysis, 
can provide metrics to predict and ideally prevent accidents. 
Such analysis is referred to as dynamic risk analysis.
	 This article introduces the concept of dynamic risk 
analysis (DRA) based on alarm databases. It provides a 
general overview of what this is, how it can be used in 
chemical processing to improve safety, and challenges that 
must be addressed over the next 5–10 years. It also high-
lights current research in this area and offers perspective on 
methodologies most likely to succeed. 

Alarms, near-misses, and accidents
	 Figure 1 is a generic control chart for a process variable. 
An abnormal event occurs when control systems are unsuc-
cessful in keeping all process (and product-quality) variables 
within their normal operating ranges, i.e., green-belt zones.
	 When a variable moves into a yellow-belt zone, a high 
or low alarm is triggered and the safety systems (operators 
and/or automated systems) take action to return the vari-

able to its normal range. If the safety systems fail to bring 
the process variable into normal operation and the variable 
moves into an orange-belt zone, a high-high or low-low 
alarm is triggered, causing higher-level safety systems 
to act. If the variable moves into a red-belt zone, safety 
systems will attempt emergency shutdown (unplanned 
shutdown), and if the safety systems are unsuccessful, an 
accident occurs.

Valuable information about unsafe conditions 
resides in the large alarm databases of  

distributed control systems and emergency 
shutdown systems. This overlooked and  

underutilized information can be analyzed to 
identify process near-misses and determine 

the probability of serious accidents.
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p Figure 1. A control chart for a process variable indicates an abnormal 
event when the variable moves outside of its green-belt zone.

Improve Process Safety 
with Near-Miss Analysis

Copyright © 2013 American Institute of Chemical Engineers (AIChE)



CEP  May 2013  www.aiche.org/cep  21

	 These accidents are low-probability, high-consequence 
events, and are often accompanied by large economic 
losses, personnel injuries, and even fatalities. (The costs of 
unplanned shutdowns — which happen more frequently 
than accidents — are also quite significant.) Of course, 
the layers of protection in place are usually successful, 
and therefore the majority of abnormal events are arrested 
before accidents occur. When an abnormal event is stopped 
before causing any damage and the variable returns to its 
green-belt zone, this is considered a process near-miss 
(which is simply referred to as a near-miss in this article). 
Near-misses are high-probability, low-consequence events. 
Accidents are typically preceded by several near-misses.
	 Many companies record these alarm occurrences in 
distributed control system (DCS) and emergency shutdown 
(ESD) databases. Operators, engineers, and managers seek 
guidance from these databases by recording key indicators 
and paying special attention when alarm flooding occurs. 
Most of the time, further analysis is done after process 
upsets, unanticipated trips, and accidents occur.
	 Companies are becoming increasingly aware that these 
databases are rich in information related to near-misses. In 
recent years, researchers have been developing key per-
formance indicators, or metrics, associated with potential 
trips (shutdowns with no associated personal injury, equip-
ment damage, or significant environmental problem) and 
accidents; leading indicators (i.e., events or trends indicat-
ing the times these trips and accidents are likely to occur); 
and probabilities of failure of the individual safety systems 
and the occurrence of trips and accidents. When conducted 
at frequent intervals, the analyses that are associated 
with these performance indicators are often referred to as 
dynamic risk analyses, or simply near-miss analyses.

Conventional risk analyses
	 Risk assessment is an important component of the 
U.S. Occupational Safety and Health Administration’s 
(OSHA) process safety management (PSM) standard, 
which includes (among other elements) inherently safer 
design, hazard identification, risk assessment, consequence 
modeling and evaluation, auditing, and inspection. Over 
the last decade, PSM has become a popular and effective 
approach to maintain and improve the safety, operability, 
and productivity of plant operations. As part of this, several 
risk assessment methods have been developed.
	 The use of quantitative risk analysis (QRA), which 
was pioneered in the nuclear industry in the 1960s, was 
extended to the chemical industry in the late 1970s and early 
1980s after major accidents such as the 1974 Flixborough 
explosion in the U.K., the 1984 Bhopal incident in India, 
etc. Chemical process quantitative risk analysis (CPQRA) 
was first fully described and introduced as a safety assess-

ment tool by AIChE’s Center for Chemical Process Safety 
(CCPS) in the 1990s as a means to evaluate potential risks 
when qualitative methods are inadequate. CPQRA is used to 
identify incident scenarios and evaluate their risk by defining 
the probability of failure, the various consequences, and 
the potential impacts of those consequences. This method 
typically relies on historical data, including chemical process 
and equipment data, and human reliability data to identify 
hazards and risk-reduction strategies.
	 Other risk assessment methods were subsequently 
developed to analyze industry-wide incident databases 
(1–5). These databases include: CCPS’s Process Safety 
Incident Database (1), which tracks, pools, and shares pro-
cess safety incident information among participating com-
panies; the Risk Management Plan database, RMP*Info (2), 
developed by the U.S. Environmental Protection Agency 
(EPA); the National Response Center (NRC) database, an 
online tool set up by NRC to allow users to submit and 
share incident reports; and the Major Accident-Reporting 
System (MARS), which is maintained by the Major 
Accident Hazards Bureau (MAHB). Recent risk analyses 
associated with chemical plant safety and operability have 
used Bayesian statistics to incorporate expert opinion (6–8), 
and fuzzy logic to account for knowledge uncertainty and 
data imprecision (9–10). Such methods have significantly 
improved quantitative risk assessment. 
	 While these methods have been important in quantifying 
safety performance, a large amount of precursor informa-
tion pointing to unsafe conditions has been overlooked and 
unutilized, because it resides in large alarm databases (e.g., 
DCS and ESD). The alarms help plant operators assess and 
control plant performance, especially in the face of potential 
safety and product-quality problems. The alarm databases, 
therefore, contain information on the progression of distur-
bances and the performance of regulating and protection 
systems. However, despite advances in alarm management 
standards and procedures, existing alarm-data analysis 
methods reported in the literature have inadequately utilized 
the risk information contained in alarm databases and have 
used the data for incident and reliability analyses only. 
	 Several comprehensive algorithms and software packages 
to evaluate process safety risks with an eye toward develop-
ing and implementing appropriate protective measures have 
been developed over the last two decades (11–12). Most of 

Despite advances in alarm management, 
existing alarm-data-analysis  

methods have inadequately utilized  
the risk information contained in  

alarm databases.
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these systems rely on the accident and failure databases men-
tioned above, which provide information such as accident 
frequencies, consequences, and associated economic losses, 
to perform quantitative risk analyses. (Other tools, discussed 
later, utilize a quantitative methodology for risk analysis 
either in real-time or on-demand, but they do not focus on 
estimating the likelihood of incidents or the failure of safety 
systems.) The analyses that involve accidents and failures 
only, and exclude day-to-day alarm information and associ-
ated near-miss data, are not highly predictive. They overlook 
the progression of events leading up to near-misses — infor-
mation that can only be obtained by analyzing data found in 
alarm databases.
	 A study of an ammonia storage facility conducted by 
the Joint Research Centre and Denmark Risk National 
Laboratory of the European Commission (13) found that 
risk estimates based on generic databases of reliability and 
failure data for commonly used equipment and instru-
ments are prone to biases and could provide widely varying 
results depending on data sources.
	 For these reasons, the importance of utilizing process-
specific databases for risk analyses has been gaining 
recognition. 

Dynamic risk analysis
	 Accidents are rare events, often described using the 
popular Swiss cheese model (14), in which the layers  
of protection are envisioned as pieces of Swiss cheese  
lined up in a row, with the holes (which vary in size and 
placement) corresponding to weaknesses in the individual 
layers of protection (Figure 2). According to this model, 
failures occur when the holes in the individual slices line 
up, creating trajectories of accident opportunities. This 
view implies that an element of chance is involved in the 
occurrence of failures. 
	 Most major accident investigations have identified 
several observable near-misses — i.e., less-severe events, 
conditions, and consequences that occur before the acci-
dent. Unless thorough analyses of process near-misses are 
performed regularly, plant personnel are likely to overlook 
the development of risky conditions, and thus, in time, 
trajectories of accident opportunities develop. 
	 Dynamic risk analysis using alarm data, which was first 
introduced by Pariyani et al. (15–16), uses alarm data (near-
miss information) to identify problems and correct them 
before they result in sizable product and economic losses, 
injuries, or fatalities. DRA involves the following steps: 
	 1. Track abnormal events (near-misses) using raw data 
from alarm databases.
	 2. Create event trees that show all of the possible paths 
an abnormal event can take when propagating through the 
safety systems.

	 3. Use a set-theoretic framework, such as that devel-
oped by Pariyani et al., to compact the data into a concise 
representation of multisets.
	 4. Perform a Bayesian analysis to estimate the failure 
probabilities of each safety system, the probability of trips, 
and the probability of accidents.
	 Figure 3 shows a typical event tree involving six safety 
systems and the consequences of each of the possible 
paths, which include continued normal operation (CO), 
shutdown (ESD) or trip, and accident (e.g., runaway reac-
tion [RA]). The six safety systems, which are typical of 
those encountered in chemical processing plants, are:
	 Safety System 1 (SS1), basic process control system 
(BPCS). This is an automated basic control system within 
the DCS that is designed to keep the process and quality 
variables within their normal operating ranges. When the 
BPCS is unsuccessful, abnormal events occur, and alarms 

p Figure 2. The Swiss cheese model depicts the relationship between 
layers of protection and accidents. Each slice of cheese represents one 
layer of protection, and the holes in the cheese correspond to weaknesses 
within each layer. According to this model, failures occur when the holes in 
the individual slices line up.
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notify the operators of the variables’ transition into their 
yellow-, orange-, or red-belt zones.
	 Safety System 2 (SS2), operator (machine + human) 
corrective actions, Level I. This is the human-operator-
assisted control system that keeps the variables between 
their high and low alarm thresholds and returns them to 
normal operating conditions. When it is unsuccessful,  
variables enter their orange- and red-belt zones.
	 Safety System 3 (SS3), operator (machine + human) 
corrective actions, Level II. This operator-assisted con-
trol system keeps the variables between their high-high 
and low-low alarm thresholds and returns them to normal 
operating conditions. These corrective actions are more 
rigorous than those of Level I. When these actions are 
unsuccessful, the variables enter their red-belt zones, with 
the potential to cause an emergency shutdown of the unit.
	 Safety System 4 (SS4), override controller. This is an 
automatic controller that takes radical actions when certain 
primary variables enter their red-belt zones. 
	 Safety System 5 (SS5), automatic ESD. This is an auto-
matic, independent system that shuts down the unit after a 
small time delay.
	 Safety System 6 (SS6), manual ESD. This human-
operated system shuts down the unit immediately. 

Hurricane Sandy 
	 Quantitative risk analysis (QRA) can be combined with 
dynamic risk analysis. The use of these methods to assess 
risk is illustrated with an analogy to Hurricane Sandy. 
	 In preparing for large storms such as this one, cities (as 
well as various government agencies and private organiza-
tions) use historical data, the layout of landmasses, and the 
locations of buildings to estimate expected flood levels and 

associated damages. Precautions are taken, infrastructure 
investments are made, and flood insurance policies are 
written based on these data to minimize, and preferably 
eliminate, damages and financial losses. 
	 According to available statistical estimates, the prob-
ability of flooding in several cities is less than 1%, i.e., 
there is less than a 1% chance of flooding each year in 
these areas (17). However, such static probabilistic values 
do not suggest the times at which flooding is more (or less) 
likely to occur. Evidently, the probability of the occurrence 
of flooding in these cities in October 2012 (when Sandy hit 
the U.S. East Coast) was much higher than the historical 
estimates. Meteorologists employed dynamic assessments 
of weather changes and water levels to identify locations 
with increasing potential for flooding and to warn commu-
nities in advance.
	 In many aspects, QRA is similar to calculating risks 
using historical databases, whereas in practice, operat-
ing conditions in a process change with time and, conse-
quently, risk levels vary dynamically. Because DRA using 
alarm data updates risk estimates of the potential for failure 
periodically (every week in the following example), it 
complements QRA in measuring the safety performance of 
a process.

Applying dynamic risk analysis
	 This example illustrates the application of DRA to an 
industrial fluidized catalytic cracking unit (FCCU) at a major 
petroleum refinery. We received data from a period during 
which as many as 5,000–10,000 alarms occurred daily on 
this unit. In this analysis, SS5 and SS6 (automatic and manual 
ESD systems) are assumed to be a single safety system. 
	 Figure 4 provides histograms of the failure rate (θ1) 
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and probabilities (θ2–θ5) of the safety systems for a key 
primary variable over the length of the study, which was 
divided into 13 equal intervals. These distributions were 
calculated using multivariate normal copulas, which model 
the dependencies between the different safety systems. 
Copulas are multivariate functions used to model the joint 
probability distribution of random variables (safety system 
failure in this example) that are modeled as univariate 
marginal distributions from different distribution families 
through their correlations (18). 
	 Over 13 periods, an average of 142 abnormal events 
occurred in each period. The mean failure probability of 
the operator Level I corrective actions (SS2) is fairly low 
(0.074) — indicating their robust performance. However, 
for operator Level II corrective actions (SS3), the failure 
probability is abnormally high (0.851), indicating the dif-
ficulties associated with SS3 keeping the variables within 

their orange-belt zones. Stated differently, the 
probability that the key variable moves from 
its yellow-belt to its orange-belt zone is just 
7.4%, while the probability of this variable 
moving from its orange-belt to its red-belt 
zone is 85%. Clearly, less-likely, moderately 
critical abnormal events are very likely to 
propagate into most-critical abnormal events 
due to the ineffective Level II control actions 
(i.e., the weak actions of SS3). Hence, to 
prevent the occurrence of most-critical abnor-
mal events on this FCCU, it is important to 
prevent the occurrence of moderately critical 
abnormal events. 
	 The failure probability of the override 
controller (SS4) is also quite low (0.017). The 
failure probability of the ESD system (SS5) is 
relatively uncertain, due to the lack of avail-

able data points. Past performance (over several months and 
years) and/or expert knowledge regarding the failure of these 
systems can be useful. The latter could be derived from the 
dynamic risk analysis of near-miss data from related plants. 
	 Given estimates of the failure rates and probabilities of 
the safety systems, incident probabilities can be estimated, 
i.e., probabilities of the occurrence of an ESD or accident. 
Two types of incident probabilities are computed with DRA: 
incident probabilities per time period (ptp), and incident 
probabilities per abnormal event (pAE), which are shown as 
histograms in Figures 5 and 6. 
	 The probability of occurrence of an ESD per period, 
p
ESD

tp , is obtained by multiplying the failure rate and the 
probabilities of SS1–4 and the success probability of SS5. 
The probability of occurrence of an accident in each time 
period, p

Accident

tp , is obtained by multiplying the failure rate 
of SS1 and the failure probabilities of SS2–5. 
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	 Similarly, the probability of the occurrence of an ESD 
per abnormal event, pESD, is calculated by multiplying the 
failure probabilities of SS2–4, and the success probability 
of SS5. The probability of occurrence of an accident per 
period, , is determined by multiplying the failure 
probabilities of SS2–5.
	 Based on the performances of these safety systems  
over the study period, on average, the probability of the 

occurrence of an ESD associated with the key primary 
variable of interest is 0.124 per period and 8.7 × 10–4 
per abnormal event. That is, an ESD is likely to occur in 
approximately one of eight periods, or in one of 1,150 
abnormal events. Similarly, an accident is likely to occur 
in approximately one of 31 periods (1/0.032) or in one of 
4,762 abnormal events. 
	 Note that while no accidents occurred during the study 
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period and no trips (ESDs) occurred over several periods, 
the Bayesian analysis estimated finite probabilities of trips 
and accidents for all periods using abnormal event history 
data and prior information (expert opinion). Also, because 
the variance in the failure probability of SS5 is large, the 
variances in the probabilities of an ESD and an accident 
are high. With additional data, this uncertainty can be 
reduced. 
	 The probabilities of ESDs and accidents can help to 
assess the compliance of chemical plants with national and 
international safety standards. For example, the Interna-
tional Society of Automation (ISA) (19) defines safety 
integrity levels (SILs) to measure the level of risk reduc-
tion provided by ESD systems. When the probability of 
failure under demand (PFD) lies between 10–2 and 10–3, the 
SIL is set at 2. For the FCCU, the mean probability of an 
ESD per abnormal event (which is indicative of the prob-
ability of failure of all safety systems except the automatic 
ESD system when a disturbance occurs) is on the order of 
10–3. For the FCCU, the SIL is equal to 2, which indicates 
that it is sufficient for the unit and is also compliant with 
safety standards.
	 More informative charts can be prepared by accounting 
for other influencing variables, such as the states of inter-
locks and equipment, that would allow broader areas for risk 
reduction to be identified.

Current state of technologies
	 To better understand current practices, one needs to 
look at alarm-based risk analysis and near-miss manage-
ment separately. Until recently, in almost all industrial 
operations, alarms were treated individually as indicators 
of different risk levels (both for operational and safety 
risks), but they were not viewed as near-misses of potential 
accidents, and thus were not analyzed as such. Currently, 
in advanced operations, alarms are studied periodically 
based on their frequency of activation, and alarm levels are 
adjusted to balance the number of alarms against the risk 
information these alarms convey. 
	 Starting with the pioneering Wharton Risk Manage-
ment study (20) and the subsequent adoption and further 
development of the concept by CCPS and other organi-
zations, dynamic risk analysis using “observable” near-
misses, such as pump and valve failures, gained significant 
importance. Large, dynamic, near-miss and reliability 
databases developed by CCPS, DNV, Exida, IEEE, IHS, 
and others, as well as company-specific near-miss data-
bases maintained internally, are now being used for statisti-
cal risk analysis. However, as pointed out earlier, because 
risk analyses based on these generic databases are prone 
to bias and subjectivity, caution must be exercised when 
using these results to predict accidents (13). Note that 
abnormal-situation detection and condition-based monitor-
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ing software that utilizes process data and is designed for 
the operating team to identify faults and abnormalities (in 
real-time or on-demand) is currently available. However, 
this software does not focus on the developments over time 
associated with the likelihood of potential incidents.
 Dynamic risk assessment based on alarm data is in 
its infancy. Recently, Near-Miss Management LLC has 
developed software called the Dynamic Risk Analyzer to 
utilize alarm data for dynamic risk analysis and identifica-
tion of process near-misses and anomalies for continuous 
processes. It seems clear that over the next five years, 
more tools will be developed to dynamically utilize the 
rich information encapsulated in alarm databases to obtain 
objective risk estimates.

Widespread adoption of dynamic risk analysis
 Rapid developments in statistical methods and com-
puter capabilities are enabling dynamic risk analysis. 
Although this concept is in its beginnings, its application 
should grow rapidly with the ongoing pooling of near-miss 
data from different sources to create richer databases for 
more-frequent risk analyses. 
 In the future, the widespread adoption of alarm-based 
dynamic risk analysis will require (among other actions) 
changes in alarm-based risk-management strategies. Some 
alarms will have fixed thresholds as is current practice, for 
example, the alarms based on structural limitations of plant 
vessels. Other alarms, those that help plants operate safely 
and reliably while producing products within quality speci-
fications, will have dynamic thresholds that vary with plant 
conditions. These alarms are sometimes grouped together for 
each interlock or equipment item to provide warning signals 
related to the physical location of the abnormal events. 
These would not detract from normal operator actions, but 
would provide additional valuable risk information. In time, 
operating personnel will learn to utilize this new informa-
tion, which will be the key to adopting, and using intel-
ligently, risk-based alerts. The frequency of dynamic risk 
analyses, the presentation of results in an actionable manner, 
and the recipient(s) of risk-based information will need to be 
studied and possibly standardized. 
 Consider this: Does implementation of alarm-based 
dynamic risk analysis lead to a different philosophy in 
setting alarm levels (thresholds)? We will study these and 
related follow-up questions in our future research.
 Finally, it should be recognized that dynamic risk 
analysis based on alarm data complements quantitative risk 
analysis, and hence, improves PSM.

Dynamic risk assessment using  
alarm data is in its infancy.

CEP CEP

Update continued from p. 10

of the future,” Zhang says. “Many people believe we will 
enter the hydrogen economy soon, with a market capacity 
of at least $1 trillion in the United States alone.”

ENVIRONMENTAL
Methane Is No Match for Zeolite Traps 
Researchers at the Lawrence Livermore National Labora-
tory (LLNL) have identified several zeolites that hold great 
potential for methane capture. One, dubbed SBN, was 
found to have adsorption sites that are optimally sized for 
methane uptake.
 Methane, the second-most-emitted greenhouse gas (based 
on concentration) behind CO2, contributes about 30% of net 
climate warming. Rising concern over potential methane 
leaks from unconventional oil and gas extraction, and the 
growing use of methane as an energy source, have heightened 
the interest in efficient methane capture. However, unlike 
CO2, which can be captured both physically and chemically 
in a variety of solvents and porous solids, methane is com-
pletely nonpolar and interacts weakly with most materials. 
Attempts to capture methane have thus far been unsuccessful.
 Methane is emitted from a wide variety of sources that 
can be characterized by concentration: high-purity (concen-
trations >90%), medium-purity (5–75%), and dilute (<5%). 
 The research team performed systematic computer simu-
lation studies on liquid solvents and nanoporous zeolites to 
determine their efficacy for methane capture. Two specific 
application areas were targeted — concentrating methane 
from a medium-purity source to high purity (e.g., purifying 
a low-quality natural gas); and concentrating a very dilute 
stream to medium purity (e.g., enabling energy production 
from coal-mine ventilation air). 
 While none of the liquid solvents were effective for 
methane capture, the screening of over 87,000 zeolite 
structures uncovered a few nanoporous candidates that 
appear promising and have good CH4/CO2 selectivity, says 
Amitesh Maiti, a scientist at LLNL. “We used free-energy 
profiling and geometric analysis in these candidate zeolites 
to understand how the distribution and connectivity of pore 
structures and binding sites can lead to enhanced sorption of 
methane while being competitive with CO2 sorption at the 
same time,” he explains. 
 The most successful of these candidates was the zeolite 
SBN, which has a large number of binding sites arranged 
in a way that maximizes the CH4–CH4 interactions. The 
amount of methane captured from a medium-concentration 
source (which could be converted to high-purity methane) 
was sufficient to make SBN technologically promsing. 
 Other zeolites, named ZON and FER, were able to 
concentrate dilute methane streams into moderate concentra-
tions while maintaining high CH4/CO2 selectivity.
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