Microengineered Hydrogels for Stem Cell Bioengineering and Tissue Regeneration

SBE Webinar
Originally delivered Aug 23, 2011

Micro- and nanoscale technologies are emerging as powerful tools for controlling the interaction between cells and their surroundings for biological studies, tissue engineering, and cell-based screening. In addition, hydrogel biomaterials have been increasingly used in various tissue engineering applications since they provide cells with a hydrated 3D microenvironment that mimics the native extracellular matrix. In our lab we have developed various approaches to merge microscale techniques with hydrogel biomaterials for directing stem cell differentiation and generating complex 3D tissues. In this talk, I will outline our work in controlling the cell-microenvironment interactions by using patterned hydrogels to direct the differentiation of stem cells. In addition, I will describe the fabrication and the use of microscale hydrogels for tissue engineering by using a ‘bottom-up’ and a ‘top-down’ approach. Top-down approaches for fabricating complex engineered tissues involve the use of miniaturization techniques to control cell-cell interactions or to recreate biomimetic microvascular networks within mesoscale hydrogels. Our group has also pioneered bottom-up approaches to generate tissues by the assembly of shape-controlled cell-laden microgels (i.e. tissue building blocks), that resemble functional tissue units. In this approach, microgels were fabricated and seeded with different cell types and induced to self assemble to generate 3D tissue structures with controlled microarchitecture and cell-cell interactions.

Professional Development Hours
1.0 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.
Presenter(s): 

Ali Khademhosseini

Ali Khademhosseini is an Associate Professor at Harvard-MIT's Division of Health Sciences and Technology (HST), Brigham and Women’s Hospital (BWH) and Harvard Medical School (HMS) as well as an Associate Faculty at the Wyss Institute for Biologically Inspired engineering.  He is also a Junior Principal Investigator at Japan’s World Premier International – Advanced Institute for Materials Research (WPI-AIMR) at Tohoku University where he directs a satellite laboratory.

His research is based on developing micro- and nanoscale technologies to control cellular behavior with particular...

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Webinar

    You must purchase this webinar using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.

Pricing

Credits 1 Use credits
List Price $99.00 Buy now
AIChE Members $69.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members Free Free access
SBE Members Free Free access
Webinar content is available with the kind permission of the author(s) solely for the purpose of furthering AIChE’s mission to educate, inform and improve the practice of professional chemical engineering. All other uses are forbidden without the express consent of the author(s). For permission to re-use, please contact chemepermissions@aiche.org.