Cell factories are used extensively to produce many specific molecules used as pharmaceuticals, fine chemicals, fuels, materials and food ingredients. Through the use of directed genetic modifications of cell factories – an approach referred to as metabolic engineering – it is possible to develop novel bioprocesses that are more efficient, that are more environmentally friendly and that may produce novel compounds. Biotech processes are therefore increasingly replacing classical chemical synthesis.
In this development it is particularly interesting to develop platform cell factories that can be used for production of many different compounds. This approach has been used with great success in the field of industrial enzyme production, where e.g. Aspergillus oryzae is used for the production of a large number of enzymes. Yeast and filamentous fungi represents very attractive cell factories for production of chemicals, as these organisms have extensive metabolic capabilities and are already implemented for industrial production of many different compounds.
Besides being and industrial workhorse for the production of beer, wine, bread, chemicals and pharmaceuticals, the yeast Saccharomyces cerevisiae serves as an important eukaryotic model organism. There have therefore been many detailed studies in this organism and the molecular mechanisms underlying many different diseases have been revealed through studies using this yeast. We have used S. cerevisiae as a platform organism for the production of a wide range of chemicals, e.g. antibiotics, organic acids, isoprenoids and lipids. In this lecture the development and use of different systems biology technologies for identification of metabolic engineering targets will be presented.
Aspergillus niger and Aspergillus oryzae are two other important cell factories, that are used for the production of enzymes and organic acids. We have recently developed an extensive systems biology toolbox for these two fungi, and in the lecture some results from this will also be presented.
To receive your PDH certificate contact certificates@aiche.org or 1-800-242-4363.
Watch the following preview of this webinar.
Would you like to access this content?
No problem. You just have to complete the following steps.
You have completed 0 of 2 steps.
-
Log in
You must be logged in to view this content. Log in now.
-
Purchase Webinar
You must purchase this webinar using one of the options below.
If you already purchased this content recently, please click here to refresh the system's record of ownerships.
Pricing
| Credits | 1 Use credits |
| List Price | $99.00 Buy now |
| AIChE Members | $69.00 Buy now |
| AIChE Undergraduate Student Members | Free Free access |
| AIChE Graduate Student Members | $69.00 Buy now |
| SBE Members | Free Free access |

