Enhanced Xylitol Production Through Simultaneous Co-Consumption of Cellobiose and Xylose by An Engineered Saccharomyces Cerevisiae Strain

Sustainable Engineering Forum
2011 AIChE Annual Meeting
AIChE Annual Meeting
October 17, 2011 - 8:00pm

Xylitol is a five-carbon sugar alcohol and has been used as a sugar substitute in the food industry because of its low caloric and anti-carcinogenic characteristics. In addition, xylitol is a building block for a variety of commodity chemicals. Biological routes for producing xylitol from cellulosic hydrolysates have been developed through metabolic engineering of Saccharomyces cerevisiae. S. cerevisiae cannot utilize xylose as a carbon source, but the expression of a xylose reductase (XR) gene from Pichia stipitis facilitates the production of xylitol from xylose with high yields. However, insufficient supply of NAD(P)H for XR, and inhibition of xylose transport by glucose, are major constraints for high productivity production of xylitol.

To overcome these problems, we engineered S. cerevisiae to convert xylose into xylitol through the simultaneous consumption of cellobiose and xylose. Specifically, xylose reductase from P. stipitis was chromosomally integrated into the S. cerevisiae genome, while a cellobiose transporter (cdt-1) and an intracellular ß-glucosidase (gh1-1) from Neurospora crassa were introduced on a multi-copy plasmid. The resulting transformant was able to produce xylitol from a mixture of cellobiose and xylose. In contrast to glucose, cellobiose did not repress the transport of xylose, allowing the co-consumption of xylose and cellobiose. The co-consumption and metabolism of cellobiose regenerated NADPH for XR. As a result, an engineered S. cerevisiae strain (D-10-BT) exhibited 40% higher xylitol productivity when cellobiose was used as a co-substrate as compared to glucose. This result suggests that co-consumption of cellobiose and xylose allows efficient xylose uptake and cofactor regeneration without catabolic repression for the production of xylitol.


Please Note: Members of the Sustainable Engineering Forum of AIChE are entitled to this content for free. Simply click on 'view this webcast' below and when you get to the shopping cart, your SEF membership will be recognized and your price will be &'$0&'. Only AIChE members are entitled to join SEF. For more info please click here. click here
Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.
Presenter(s): 

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.

Pricing

Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members Free Free access