Design Space Definition Using a Variational Bayes' Approximation

Comprehensive Quality by Design in Pharmaceutical Development and Manufacture
2011 AIChE Annual Meeting
AIChE Annual Meeting
October 19, 2011 - 8:00pm

The design space may be interpreted as the constrained region of the key manufacturing parameters space which provides assurance of quality of a drug given that manufacturing occurs in this region. The metric used to represent this assurance should not be deterministic, rather it should be stated in probabilistic terms. In this work, we report on the use of Bayesian methods to develop a suitable risk metric based on statistical models of the manufacturing processes and product properties. The Bayesian inference is carried out to determine the posterior distribution of the probability of the product meeting quality specifications. Here, we propose an alternative optimization based procedure, the variational Bayes’ approximation, to obtain the posterior distribution. A sequential methodology is proposed to deal with non-linear models and the consideration of covariance. The results are compared to the widely used but computationally intensive Markov Chain Monte Carlo method. The proposed approached is illustrated with information drawn from a QbD study on Gabapentin.
Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.


Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members Free Free access