Placement of Catalyst in Electrospun Silica Nanofibers for the Alkaline Hydrolysis of Biomass

Nanomaterials for Energy Applications
2010 AIChE Annual Meeting
AIChE Annual Meeting
November 11, 2010 - 7:00pm
The use of electrospinning to generate one dimensional materials has garnered significant interest lately due to its inexpensive nature and the diversity of materials fabricated. Recently one dimensional materials have also been investigated to support catalytic nanoparticles to prevent aggregation while maintaining high surface area to volume ratios. In this study inorganic monoaxial nanofibers with nanocrystals dispersed throughout the fiber as well as coaxial nanofibers with nanocrystals selectively placed in the sheath layer have been fabricated through sol-gel synthesis and electrospinning followed by thermal treatment. The fiber morphology and metal domains in silica nanofibers were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The resulting silica nanofibers containing metal domains were applied as a catalyst system for the alkaline hydrolysis of biomass to produce hydrogen with minimal carbon monoxide or dioxide contents. Our results demonstrate that a conversion of nearly 100 percent can be achieved, and by placing the catalyst within the sheath layer of the nanofibers, the amount of catalyst required can be significantly reduced (up to four fold).
Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.


Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members Free Free access
Related Topics: