The aggressiveness of the MSG molten salt reaction will decompose any carbon-bearing material into a gaseous stream. The reactions can be operated at pressure by simple pressurization of the input water stream and feedstock. The MSG process occurs at pressure in a single reactor but occurs in three steps: 1) reaction of sodium carbonate with water and carbon generating sodium, carbon dioxide, and hydrogen; 2) instantaneous reaction of sodium with water generating sodium hydroxide and hydrogen; and 3) reaction of sodium hydroxide with carbon and water generating sodium carbonate and hydrogen. Experimental data indicates the feed stock ratios can be adjusted so the net of the reactions can be either slightly exothermic or slightly endothermic. The output can be adjusted by changing the operating conditions to generate hydrogen, synthesis gas, or methane. The net chemical reactions with the system operated for synthesis gas are shown below.
Na2CO3 + 3 C + H2O -- > 2 Na + 4 CO + H2 Equation 1
2 Na + 2 H2O --> H2 + 2 NaOH Equation 2
2 NaOH + C + H2O --> Na2CO3 + 2 H2 Equation 3
The paper will discuss the status of the technology and show data from the laboratory experiments and discuss the status of the pilot plant currently in fabrication.
Watch the following preview of this presentation.
Would you like to access this content?
No problem. You just have to complete the following steps.
You have completed 0 of 2 steps.
-
Log in
You must be logged in to view this content. Log in now.
-
Purchase Technical Presentation
You must purchase this technical presentation using one of the options below.
If you already purchased this content recently, please click here to refresh the system's record of ownerships.
Pricing
| Credits | 0.5 Use credits |
| List Price | $25.00 Buy now |
| AIChE Members | $15.00 Buy now |
| AIChE Undergraduate Student Members | Free Free access |
| AIChE Graduate Student Members | $15.00 Buy now |
