Modeling & Optimization of Dye Sensitized Solar Cells with Core/Shell Nanowire Array-Based Photoanodes

Nanomaterials for Energy Applications
2010 AIChE Annual Meeting
AIChE Annual Meeting
November 9, 2010 - 7:00pm
The benefits of utilizing nanowire-based photoanodes for dye sensitized solar cells is quickly becoming apparent. Nanowire structures allow for the presence of an interfacial electric field that is otherwise absent in nanoparticle-based dye sensitized solar cells (DSSCs). This electric field enhances charge transport by inducing potential gradient migration. This mechanism does not occur in nanoparticle-based devices, which are limited to charge transport by only diffusion. Additionally, the presence of an interfacial electric field is believed to reduce the rate of photogenerated electron back reaction with the electrolyte, enhancing photocurrent and allowing for differing electrolyte compositions that may increase photovoltage. Furthermore, the use of conductive core/semiconductive shell nanowire structures decouples the length a photogenerated charge must travel to be collected from the photoanode thickness (and thus overall photoactive surface area). In this computational study, we investigate how the presence of an interfacial electric field affects interfacial charge transfer, bulk charge transport and charge carrier distributions. The numerical results indicate that electron loss reactions are 1000-fold less when an interfacial electric field is present. Furthermore, varying the special parameters of the photoanode to optimize performance indicates that DSSCs with photoanodes much thicker than 10 µm (the optimal thickness for nanoparticle-based DSSCs) can be used. This result indicates that efficiencies much larger than the current 12% achievement are attainable through conductive core/semiconductive shell nanowire arrays.
Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.


Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members Free Free access
Related Topics: 
Skill Level: