The images show expected changes as stress is increased: rearrangement of the packing structure, corresponding reduction in porosity, and some embedding at rock walls. At the largest stresses, individual proppant particles began to break apart.
Numerical simulation was performed using finite element and lattice Boltzmann methods. Results from both methods were used to compute permeability and Forchheimer coefficient (Beta factor) for the structures. Simulation results show reasonable agreement with experimental (vendor-reported) conductivity values (both permeability and beta). However, our results show that conductivity is less sensitive to loading than has been reported. Another somewhat surprising result is that fracture conductivity for the single-layer proppants confined between shale is similar to what would be predicted from bulk-proppant permeability, despite the significantly different flow geometry in the monolayer fracture. Possible reasons for this result as well as insights derived from flow visualization are presented in the paper.
Watch the following preview of this presentation.
Would you like to access this content?
No problem. You just have to complete the following steps.
You have completed 0 of 2 steps.
-
Log in
You must be logged in to view this content. Log in now.
-
Purchase Technical Presentation
You must purchase this technical presentation using one of the options below.
If you already purchased this content recently, please click here to refresh the system's record of ownerships.
Pricing
| Credits | 0.5 Use credits |
| List Price | $25.00 Buy now |
| AIChE Members | $15.00 Buy now |
| AIChE Undergraduate Student Members | Free Free access |
| AIChE Graduate Student Members | $15.00 Buy now |
