Graphitic Material with Engineered Graphene Units for High-Power Li Ion Battery Electrodes

Fuels and Petrochemicals Division
2011 AIChE Annual Meeting
AIChE Annual Meeting
October 16, 2011 - 8:00pm
Li ion batteries capable of delivering a high current without sacrificing voltage or energy density are highly desirable, since they can be recharged faster and provide longer operation time when used in devices that demand high power. In the current generation of batteries using graphite as the negative electrode material, the rate of Li ion insertion into and migration out of the graphite is a major factor that limits the power delivered by the battery. We have found that by carefully engineering the graphene units, which are the primary building block of graphite, it is possible to increase the Li ion diffusivity in the material significantly, which results in greatly increased charge capacity during high current operation. We report here a solution chemical method to produce the engineered structure that is readily scalable and add minimal costs to the manufacturing process. Electrodes prepared with the graphite formed from such engineered graphene sheets maintained a charge capacity of 180 mAh/g even when discharged at a rate of 2 A/g. Without the engineered structure, the charge capacity would be less than 70 mAh/g. The electrode prepared with the engineered material exhibits excellent cycling stability with no detectable capacity loss after >100 cycles. The nature of the engineered graphene sheets was investigated using high resolution electron microscopy, and the results show that there is an optimum size and density of the engineered structure.
Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.


Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members Free Free access