Flare Minimization Via Dynamic Simulation

The 21st Ethylene Producers Conference
2011 AIChE Spring Meeting
AIChE Spring Meeting and Global Congress on Process Safety
March 15, 2011 - 8:00pm

Flaring in chemical process industry (CPI) is an important method to protect equipment and personnel safety during the process upset and the chemical plant turnaround. However, excessive flaring emits lots of carbon dioxide as well as air pollutants, which cause negative environmental and social impacts. Besides, excessive flaring reduces company profits due to the tremendous material and energy losses which should be minimized.

CPI has set up flare minimization as a goal in their daily operations. Root-cause-analysis (RCA) has been used in chemical plants to identify causes of major flaring; but RCA does not offer a method for flare minimization. Up to now, flare minimization in chemical plant depends almost exclusively on experienced operators, engineers, administrators, and a well planning, scheduling, and training in the plant. But this is not enough for CPI today because of increasingly strict environmental regulations and economic competitions.

This presentation describes a general methodology we have developed for flare minimization through plant-wide dynamic simulation. The methodology starts with establishment and fine-tuning of plant-wide steady-state and dynamic simulation models. The fine-tuned dynamic simulation model is then used to virtually run and examine the startup operating procedures for the plant. If an unstable or a dangerous situation is identified, the plant operational procedures will be modified and then checked again with the dynamic simulation model. This modification-and-check can be repeated until optimal operating procedures with realistic constrains are concluded. The dynamic simulation provided an insight into the process dynamic behaviors, which is crucial for a plant to minimize the flaring; meanwhile, maintain the operating safety.

The effectiveness of the developed methodology has been demonstrated by field tests in ethylene plants. Two types of startup procedures, with and without total recycles, were tested. Results of unstable conditions were identified and dynamic responses of new startup procedures were examined. Three field test cases will be presented.

Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.
Presenter(s): 

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.

Pricing

Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members Free Free access
Skill Level: