Dynamic Simulation of Demethanizer and Chilling Train System

AIChE Spring Meeting and Global Congress on Process Safety
April 2, 2012 - 12:00am

The chilling train system is an important part of ethylene plant which is usually combined with demethanizer and a series of flash drums to separate hydrogen and methane from cracked gas, and recover the hydrogen and methane as different products through multi-stream heat transfer with refrigerants. The system of demethanizer and chilling train is the intermediate part of an ethylene plant whose performance can significantly affect the amount of flaring during start-up and thus energy consumption. However, most research efforts are focused on design and steady-state optimization aspects, the dynamic behavior of chilling train is rarely explored. In this study, several control strategies of demethanizer and chilling train system will be simulated and corresponding dynamic responses will be investigated in order to reduce time and flaring during start-up.

General methodology includes the following steps: 1) In the first place, a steady-state model will be built using the sequential modular approach and plant design data; 2) the model will be further validated with normal steady state operating conditions obtained from the DCS (distributed control system) historian; 3) If the steady-state model is satisfied, it will be exported to the dynamic simulation environment. Three types of data will be needed in this transferring, including equipment dimensions, control strategies and P&ID (piping and instrument diagram) parameters, and the heat transfer option; 4) after the dynamic modeling is completed, it will be further validated to match some process upsets in DCS historian; 5) the control strategies will be tested in dynamic simulation to decrease start-up time and energy consumption. A case study is used for the demonstration.

Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.
Presenter(s): 

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.

Pricing

Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Fuels and Petrochemicals Division Members Free Free access
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members $15.00 Buy now
Related Topics: