A Compact Integrated Warm Syngas Overall Cleanup System

Innovations of Green Process Engineering for Sustainable Energy and Environment
2010 AIChE Annual Meeting
AIChE Annual Meeting
November 8, 2010 - 7:00pm
Gasification of coal or biomass to syngas followed by catalytic synthesis of ammonia, hydrocarbons or oxygenates provides a feasible strategy to meet the increasing demand for fertilizers and transportation fuels. This syngas has many impurities, including As, Be, Cd, Cl, Cr, Hg, K, N, Na, P, Pb, S, Sb, Se, V, Zn. Most of them need to be removed down to part per billion levels (ppb) due to their strong interactions with syngas reforming and synthesis catalysts. Although technical approaches exist for removal of these species, they are rather costly, employing solvents at ambient or lower temperature and backup sacrificial sorbents. The energy efficiency of the current process would be improved if all the contaminants can be removed at temperatures higher than the syngas reforming and chemical synthesis temperatures (greater than 200oC). In this presentation, we will describe our recent progress in developing a compact, integrated system for overall impurity cleanup from warm syngases generated from water-quenched coal or biomass gasifiers. This compact system consists of four major sub-systems: 1) a particulate filter to remove solid impurities, 2) a high capacity sacrificial absorption bed to remove HCl, 3) two sequential absorbent beds to remove sulfur from more than 1000 ppm levels down to less than 60 ppb levels, and 4) a high capacity metal-based sacrificial absorbent to remove As, P, Se, and trace level S and HCl. Each sub-system was individually developed, and a compact integrated system was built up. This integrated system was demonstrated to be able to remove all the catalysts poisons in a simulated warm syngas stream and thus effectively prevented the downstream syngas reforming catalysts from being deactivated. This compact system can also be used in stationary hydrocarbon fuel processors for clean feed gas generation for fuel cells applications.
Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.
Presenter(s): 

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.

Pricing

Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members $15.00 Buy now
Related Topics: