Synthesis of Green Diesel Fuel From Fatty Acid Feedstocks Via Electrochemical Hofer-Moest Decarboxylation

Sustainable Engineering Forum
2011 AIChE Annual Meeting
AIChE Annual Meeting
October 18, 2011 - 8:00pm

Production of biodiesel by esterification or transesterification of long-chain fatty acids is a well known process, but the fuel product has characteristics making it not fully compatible with petroleum diesel engines. A better option is to convert fatty acid molecules to hydrocarbons by removing their carboxyl group. Decarboxylation of fatty acid feedstocks was performed by electrolysis using graphite electrodes, which selectively causes a Hofer-Moest (or non-Kolbe)-type reaction. Methanol was used as a solvent for a robust selection of fatty acid feedstocks.

The liquid product created by the electrochemical reaction was composed of mainly alkenes with at least one double bond, ethers, and methyl esters. This fuel product has advantageous cold-flow properties, no sulfur content, heating values close to those of diesel fuels, and is capable of running in current diesel engines as a drop-in replacement for petroleum diesel, unlike biodiesel. The temperature, pH, concentrations of ions, and type of base used were all varied to optimized the current density, which limits the production rate. A separation method was tested for removal of the fuel product from the electrolyte. An efficiency was then calculated for several varieties of fatty acid feedstocks, comparing the electrical energy input to the product generated from the electrolysis. Overall first-law thermodynamics and economics were also evaluated, examining production rates and the large-scale viability of the process.

Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.


Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members Free Free access
Skill Level: