Simultaneous Extracellular Polymeric Substance (EPS) and Lipid Production by Activated Sludge Via Fermentation of Glucose

International Congress on Energy 2011
2011 AIChE Annual Meeting
AIChE Annual Meeting
October 19, 2011 - 8:00pm

The use of activated sludge microflora to convert sugars, derived from the hydrolysis of lignocellulose biomass, into lipids for biofuel productionis of current research interest in our group. Lipid accumulation in this system has been enhanced by manipulating the carbon-nitrogen (C:N) ratio and initial sugar loading on activated sludge bioreactors with glucose as the main carbon source. Activated sludge is a flocculated suspension composed of microorganisms that can also produce extracellular polymeric substances (EPS) in situ during fermentation. Microbial EPS which are secreted largely by bacteria in harsh environments are a matrix rich in polymers including polysaccharides, glycoproteins, proteins, nucleic acids and phospholipids. Thus, studying EPS production along with lipid formation is essential for understanding the technical and economic value of the whole process. In this study, samples were obtained from aerobic batch fermentation inoculated with 20 % (v/v) activated sludge. The total incubation time for the batch fermentation experiment was seven days. EPS from the collected samples were extracted using a Dowex cation exchange resin in phosphate buffered saline solution and precipitated with 95% v/v cold ethanol and dialyzed. Fourier transform-infrared spectroscopy of freeze-dried EPS revealed characteristic IR peaks for polysaccharides and proteins. Total polysaccharide and protein concentrations were estimated in each EPS sample using phenol-sulfuric and modified Lowry methods, respectively. An increase in lipid % (g/g cell dry weight) and a decrease in specific EPS % (g/g cell dry weight) was observed from day 0 to 7 in all treatments. Increasing the carbon loading while maintaining the same C:N ratio increased lipid % and decreased specific EPS %. However for a low C:N ratio, lipid % remained constant while specific EPS % decreased. These results will be useful for manipulation of EPS and lipid production and consequently enable development of valuable strategies for improving the process.
Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.
Presenter(s): 

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.

Pricing

Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members Free Free access