Here we put emphasis on the enzymatic synthesis of formaldehyde with formic acid or CO2 as a substrate, respectively, with a catalyst composing of one or two kinds of dehydrogenases. In the former, reactions were performed in a plastic tube containing formaldehyde dehydrogenase and NADH dissolved in phosphate buffer, and formaldehyde formed was examined by high performance liquid chromatography. The mole ratio of formic acid to NADH plays an important role in the promotion of reaction. The larger the ratio is, the higher the initial velocity and maximum conversion rate are. The yield of formaldehyde was up to 21.3% after reaction for one hour when formic acid was applied as a substrate. The conversion of CO2 to formaldehyde catalyzed by formate dehydrogenase and formaldehyde dehydrogenase with the assistance of NADH also showed a positive result in a preliminary study.
The work will provide a good guidance for further study on the membrane-attached dehydrogenases and their application in the conversion of carbon dioxide to formaldehyde or methanol.
Watch the following preview of this presentation.
Would you like to access this content?
No problem. You just have to complete the following steps.
You have completed 0 of 2 steps.
-
Log in
You must be logged in to view this content. Log in now.
-
Purchase Technical Presentation
You must purchase this technical presentation using one of the options below.
If you already purchased this content recently, please click here to refresh the system's record of ownerships.
Pricing
| Credits | 0.5 Use credits |
| List Price | $25.00 Buy now |
| AIChE Members | $15.00 Buy now |
| AIChE Undergraduate Student Members | Free Free access |
| AIChE Graduate Student Members | $15.00 Buy now |
