Effect of Column Temperature On HPLC Separation of Acetic Acid and Levulinic Acid

International Congress on Energy 2011
2011 AIChE Annual Meeting
AIChE Annual Meeting
October 18, 2011 - 8:00pm

High performance liquid chromatography (HPLC) is a routine method in the analysis of degradation products in the prehydrolysate or the hydrolysis liquor of lignocellulosic biomass. Cation exchange column chromatography with a metal counter ion has been used for the quantitative analysis of carbohydrates with water as the eluent. A cation exchange column with exchangeable hydrogen ion (H+) has been employed in quantification of organic acids and furan derivatives with acidic water as the mobile phase. In particular, the Aminex cation-exchange HPX-87H column has been developed for determining organic acids, furan derivatives and alcohols. Although this column has been broadly used in biomass analysis, potential issues with co-elution of target analytes have been reported by several groups. Scarlata and Hyman (2010) suggested that Aminex HPX-87H column was not suitable for biomass sugar analysis because xylose, galactose and fructose are co-eluted together, and glucose and mannose are co-eluted together. The co-elution of acetic acid and levulinic acid has not been addressed indicated the value of acetic acid in biomass hydrolysate was not reliable at high severity due to continuous degradation of furfural and HMF to levulinic acid.

As one of the principle components in hemicelluloses, acetic acid always has a noticeable amount in the hydrolysate of lignocellulosic biomass. Characterization of this organic acid becomes even more important during fermentation due to its inhibition to the microorganisms. Levulinic acid, one of the normal degradation compounds of HMF, is present in the hydrolysate at low concentrations. The separation of these two acids could be easily ignored due to their co-elution in the hydrolysate liquor. Moreover, the separation performance of HPLC column gradually deteriorates during its lifetime worsening co-elution of these two acids. Solutions to improve the separation of these organic acids included the use of a dual column system, employment of a capillary electrophoresis to separate and quantify the concentration of acetic acid and levulinic acid from softwood hydrolysate. However, no method has been developed to resolve co-eluting acetic acid and levulinic acid by optimizing the HPLC chromatographic conditions. In the present study, the improvement of HPLC separation of acetic acid and levulinic acid on the Aminex HPX-87H column was investigated by varying column temperature, flow rate, and concentration of sulfuric acid in the mobile phase. Resolution and capacity factors were used as indicators for measuring the effectiveness of separation using pure standard compounds as well as real biomass hydrolysate from woody biomass.

Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.
Presenter(s): 

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.

Pricing

Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members Free Free access
Skill Level: