Dynamic Model of a Solar Thermal Transport Tube Reactor for Control Purposes

Solar Topical
2009 AIChE Annual Meeting
AIChE Annual Meeting
November 11, 2009 - 7:00pm
A solar thermal reactor receives concentrated solar irradiation and uses this energy to thermally convert biomass into synthesis gas (H2, CO and CO2). The operation of this reactor is affected by the presence of clouds, which act as a disturbance for this process. When clouds are partially covering the sun, the reactor can still operate but the flow rates need to be regulated in order to optimize its operation and to avoid complications in the separation processes downstream. Thus, a robust control system that will allow continuous high performance operation of the reactor is required to make the process more feasible. The first step for the development of the control system is to determine the dynamics of the process and to analyze the transient response to the presence of clouds. Therefore, a simplified dynamic model is developed, based on unsteady energy and mass balances. This model needs to be simple enough to be executed in real time on site, but still needs to describe the most important physical characteristics of the system. Experimental runs for model validation were performed at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL), using different power levels and inert particles with different emissivities. In this work, a comparison of the modeling and experimental results is presented.&'
Professional Development Hours
0.4 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.
Presenter(s): 

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.

Pricing

Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members $15.00 Buy now
Related Topics: