Time Dependent Implementation of Argonne's Model for Universal Solvent Extraction

  • Type:
    Conference Presentation
  • Conference Type:
    AIChE Annual Meeting
  • Presentation Date:
    October 18, 2011
  • Skill Level:
  • PDHs:

Share This Post:

You will be able to download and print a certificate for PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.

Argonne’s Model for Universal Solvent Extraction (AMUSE) simulates multi-stage aqueous solvent extraction processes for components of interest to spent nuclear fuel reprocessing. The current work has incorporated time dependency into the simulation; the original AMUSE program was used for steady-state simulation. Determining the evolution of component concentrations with time allows for improved accountancy of neutron capture products and fission products. Additionally, potential transient accumulations can be identified, which will allow for improved safety during process start-up. This implementation uses a lumped efficiency term to represent the mass transfer rate between phases within each stage and uses a well mixed assumption for the concentrations within each phase. Additional work to determine the total interfacial area is ongoing at Argonne National Laboratory, and will eventually be used to replace the lumped efficiency term.



Do you already own this?

Log In for instructions on accessing this content.


AIChE Member Credits 0.5
AIChE Members $15.00
AIChE Undergraduate Student Members Free
AIChE Graduate Student Members Free
Non-Members $25.00