Solar Thermal Production of Hydrogen Using Alumina Supported Ferrites: Thermodynamic Evaluation and On-Sun Validation

  • Type:
    Conference Presentation
  • Skill Level:
    Intermediate
  • PDHs:
    0.50

Share This Post:

You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.

Alumina supports were coated with CoFe2O4 using an alternating atomic layer deposition process. Nano-powder and hollow skeletal shells were used as supports. Large, high surface area polymer particles (~600µm, 43.5 m2/g) have been coated via ALD with several layers of alumina. The alumina layers were applied using TMA/water ALD chemistry. The particles were then heated to 800°C in air to burn out the polymer substrate. Thermodynamic modeling of the particles shows the creation of a hercynite/spinel phase that is capable of being cycled with water to produce hydrogen. The process requires reduction temperatures several hundred degrees below those of conventional ferrites supported on inert materials. Cycling has been completed on-sun at the National Renewable Energy Laboratory in Golden, CO. Powders were housed in a prototype concentrated solar reactor and subjected to cycling. Hydrogen production was quantified using a mass spectrometer. Results were used to estimate solar to hydrogen efficiency of the prototype reactor.
Presenter(s): 

Checkout

Checkout

Do you already own this?

Log In for instructions on accessing this content.

Pricing

AIChE Member Credits 0.5
AIChE Members $15.00
AIChE Undergraduate Student Members Free
AIChE Graduate Student Members Free
Non-Members $25.00