Maskless Fabrication of Nanowells Using Chemically Reactive Colloids

Developed by: AIChE
  • Type:
    Conference Presentation
  • Skill Level:
    Intermediate
  • PDHs:
    0.50

Share This Post:

You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.

We describe a maskless process for the fabrication of nanowells on a silicon substrate using chemically reactive nanoparticles. Positively-charged amidine-functionalized polystyrene latex (APSL) colloids are adhered onto a silicon wafer, and hydrolysis of the particles' amidine groups generates ammonium hydroxide, which does local etching. The localized release of this reactive species and its rapid diffusion into the bulk liquid ensure that the silicon etching takes place only under the APSL colloids. As a result, the basal length of the nanowells is precisely controlled by the diameter of the APSL particles. The shape of the nanowells depends on the structure of the substrate: inverted pyramids on silicon (100) and hexagonal pits on silicon (111). The method described here provides an easy, inexpensive, safe, and high-throughput approach for generating nanowells on silicon surfaces. The process involves no mask, and is simple to conduct, and thus could open doors for new applications with locally generated or locally delivered chemistry from nanoparticles.
Presenter(s): 

Checkout

Checkout

Do you already own this?

Log In for instructions on accessing this content.

AIChE MEMBERS

AIChE Member Credits 0.5
AIChE Members $15.00
AIChE Undergraduate Student Members Free
AIChE Graduate Student Members Free
Non-Members $25.00