Hydrothermal Fabrication of Ordered SnO2 Nanorod Arrays by Liquid Phase Conversion Process for Dye-Sensitized Solar Cells

  • Type:
    Conference Presentation
  • Skill Level:
    Intermediate
  • PDHs:
    0.50

Share This Post:

You will be able to download and print a certificate for PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.

One-dimensional semiconductor materials have attracted significant research interest because of their unique properties for various technological applications. SnO2, as a wide band-gap semiconductor material is a promising photoanode material for dye-sensitized solar cells because of its fast electron mobility and suitable conduction band-edge position. Crystalline, ordered SnO2 nanorod arrays were successfully grown directly on a transparent conducting oxide using a hydrothermal approach. The fabrication procedure involved using an ordered ZnO nanowire array as a template and then converting it into SnO2 nanorod array via a liquid-phase conversion process. Large-scale growth of uniform nanorod arrays, with high orientation consistency, was achieved through this low temperature hydrothermal process. Furthermore, the performance of SnO2 nanorod arrays as photoanode in dye-sensitized solar cells was evaluated.
Presenter(s): 

Checkout

Checkout

Do you already own this?

Log In for instructions on accessing this content.

Pricing

AIChE Member Credits 0.5
AIChE Members $15.00
AIChE Undergraduate Student Members Free
AIChE Graduate Student Members Free
Non-Members $25.00